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Fine, let us continue.
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We left at this particular point, probability of X bar-z alpha/2 sigma/root n<=mu<=X bar + z

alpha/2 sigma/root n that is = 1-alpha. A few things to note, we are using capital X here and

this is small z representing the upper alpha / 2% points of the standard normal distribution.

Sigma  is  assumed  to  be  known,  n  is  the  sample  size.  This  is  the  unknown  population

parameter mu and here we are having 1-alpha, that alpha divided by 2 is used in the subscript

for z.
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Hence, if x bar is the sample mean, small x bar is the sample mean of a random sample of

size  n  obtained from a  normal  population  with  known variance  sigma squared,  then  the

100*1-alpha% confidence interval on mu is given by x bar-z alpha/2 sigma/root n<=mu<=x

bar + z alpha/2 sigma/root n. So, this is based on the earlier definition. So, the values are so

identified on either side of mu such that the probability that mu lies between these two values

is 1-alpha. 

So, what are those values and after identifying those values, we can project them as the lower

limit and the upper limit for mu and that is what we have exactly done here. We will now

look at z alpha/2.
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Z alpha/2 is the upper 100*alpha/2% point of the standard normal distribution.



(Refer Slide Time: 02:36) 

You have the normal distribution sketched here. What is this? This is the standard normal

distribution with mean 0 and standard deviation 1. And the upper 100*alpha/2% points are

shown here and also here. This is -z alpha/2. We are defining with respect to z alpha/2 and if

we  choose  alpha  as  0.05,  then  1-alpha  will  be  0.95.  So,  that  would  represent  the  95%

confidence interval and alpha/2 will then become 0.025 so that 0.025 is the area under the

curve beyond the point z alpha/2. 

So, the probability of the standard normal variable taking a value > z alpha/2 is 0.025, when

alpha is 0.05. So, that is what is done here and according to symmetry, if you have located z

alpha/2  here for this  particular  case of  alpha  0.05 z  alpha/2 takes  the value of 1.96.  So,

probability of the standard normal variable >1.96 is 0.025. Similarly, here you are having

-1.96 and that represents -z alpha/2 and the probability of the random variable z taking a

value <-1.96 is 0.025.
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X is a random variable X bar the point estimator is also a random variable.
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And the confidence interval we have constructed is bounded by two random variables. We

can see here x bar -z alpha/2 sigma/root n<=mu<=x bar + z alpha/2 sigma/root n. So, this

came from the definition of the confidence interval and x bar is a random variable and x bar-z

alpha/2 sigma/root n is also a random variable.  X bar + z alpha/2 sigma/root n is also a

random variable. So, the confidence interval is based on two random variables. 

Hence the confidence interval is also a random variable and it can theoretically have different

bounds.
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To demonstrate  what  is  meant  by  a  confidence  interval,  we  will  take  a  small  example.

Probability of X<-X bar, we will find after assuming that m*=50, I am putting star because it

is assumed. The mu is assumed. We really do not know the exact value of the population

mean but for the purpose of demonstration, let us see what happens if mu is 50. Sigma =15,

standard deviation of the normal distribution and n=16, which is the sample size.
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So, the probabilities of various sample means X bar belonging to the population of mean 50

may be computed as shown in the table below. What we are doing is we are going to take

different  sample means and we are going to see what is  the probability  of choosing that

sample mean value or lower from a distribution of sample means centered around 50. So,

given mu assumed mu star=50 what is the probability of a random variable X bar taking the

specified value of X bar or lower. 



So, we are going to find that probability using the assumed mu star and the known sigma/root

n. So, we are also going to fix the sample size and for example, we have n=16, we know z

alpha/2 from the previous graph corresponding to the alpha value of 0.05, z alpha/2 had a

value of 1.96. So, we take Z alpha/2 as 1.96 for the 95% confidence interval. This becomes

1.96, sigma we assume or take that value as 15. We have taken a sample of size 16. 

So, if you plug in these numbers in that formula we will get Z alpha/2 sigma/root n=7.35. So,

this number, you please remember.
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Right, this is a very interesting table. You have sample means here, you can have infinite

number of sample means because it is a continuous distribution. You can have 40, 40.001,

40.0001 etc. So, there can be infinite sample means for the purpose of demonstration, I have

chosen increments of 1 up to 42. Then you have 42.65 and then increments of 2 from 44, 46

and so on to 56, then you have 57.35 and then 58. We calculate Z, Z is X bar-mu/sigma/root n

and that comes as 40-50/15/4. 

So, I compute these Z values because I have to convert it into the standard normal variable

form. So, these are the values taken by the standard normal variable. So, I have values from

-2.67 to 2.13 and then I am finding the probability that Z<=z. What is the probability that the

sample mean of 40 or lower could have come from the sampling distribution with mean 50

and  standard  deviation  15/4,  15/4  is  3.75.  So,  we  are  having  a  probability  distribution

centered around 50 and having a standard deviation of 3.75. 



So, what is the probability of picking up a sample mean of 40 or lower from that distribution.

And that comes as 0.0038. So, that is a very small chance of picking up a random sample

with  mean  value  of  40  from  a  sampling  distribution  of  means  centered  around  50  and

standard deviation of 3.75. Then you have 41, the probability increases slightly and when you

come to 42.65, then the Z value is -1.96 and the probability is 0.025 okay. 

And then the probability values keep increasing and then we have 57.35, which is 50+7.35,

which is mu + z alpha/2 sigma/root n. We saw that value Z alpha/2 sigma/root n as 7.35. So,

we have mu star + Z alpha/2 sigma/root n as 57.35. Here you have 50-7.35 or mu star-Z

alpha/2 sigma/root n and that comes as 42.65. So, at 42.65 the probability of Z<=z is 0.025

and the probability of Z<=z at a sample mean of 57.35 is 0.975. 

So, you are having 0.025 here so, 42.65 and 57.35 you are having 0.975. the probability

difference is 0.975-0.025 which is 0.95. In other words, we can say what is the probability of

picking  up  a  sample  mean  between  57.34  and  42.65  when  the  sampling  distribution  is

centered around 50 with a standard deviation of 3.75.  So, that  probability  is 0.975-0.025

which is 0.95.
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So, I have represented the information given in the table graphically. Here, we have 42.65,

here we have 57.35. the probability of the random sample having a value <=42.65, when the

distribution is centered around 50 and the standard deviation is 3.75 is 0.025 here. And this

entire probability for X bar<57.35 is 0.975. So, the region between 42.65 and 57.35 will have



an area under the curve of 0.95 or the probability of X bar lying between these two values

will be 0.95.
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That is what I have done here, I have shaded that portion and that comes as 0.95. This plot

and the previous one were generated using Minitab.
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So, the plots generated with Minitab show that the sample means with values 42.65 and 57.35

are the 95% confidence lower and upper bounds on the population mean mu of 50.
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The probability is mu lying between 42.65 and 57.35 is 0.95.
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During the actual  sampling process,  we get only one sample and hence we get only one

sample mean X bar. So, how do you know that your samples confidence interval bounds mu?

We have assumed mu star=50 for illustration purposes only. Mu also may not be 50, it may be

some other value.
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We are working on a confidence interval length around mu. What is that confidence interval

length? That is what we are going to see. The confidence interval length is defined as the

absolute value of X bar-mu. The distance between X bar and mu is termed as the length and

we are taking the positive value only. So, we put a modulus on X bar-mu. If X bar>mu, it is

positive, if X bar is <mu, X bar-mu is negative. But, modulus of X bar-mu is negative. 

But, modulus of X bar-mu is positive only. So, the confidence interval length X bar-mu is

<=Z alpha/2 sigma root n.
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So, what we can do, we can construct an infinite number of confidence intervals. So, we can

generate a large number of confidence intervals okay.
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Continuing,  if  the  population  mean  is  indeed  50,  then  among  the  different  possible

confidence intervals generated based on the randomly drawn sample means, those confidence

intervals overlapping the region between 42.65 and 57.35 will constitute 95% of the selected

confidence intervals okay. So, we can generate infinite number of 95% confidence intervals

based on the selected or chosen random samples. 

So, let us say, we have a large number of confidence intervals, if the population mean was 50,

I am putting a big if there, then among the so many different confidence intervals we have,

the confidence intervals that overlap the region between 42.65 and 57.35 will constitute 95%

of them, 95% of the generated confidence intervals. And of course, the confidence intervals

overlapping the region between 42.65 and 57.35 will encompass the population mean mu of

50. 

Let us see what this means. I will put a table here.
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So, here we have different sample means. We can choose infinite number of them but, for

purpose of demonstration I have chosen only a few typical sample means starting from 40

going up to 58. Then, X bar-mu=Z alpha/2 sigma/root n, which we know as 7.35. So, we can

generate our confidence intervals with the upper limits given by this column and lower limits

given by this column okay. 

So,  each  represents  a  confidence  interval  and  the  upper  limit  for  a  sample  mean  or  the

confidence intervals upper limit based on a sample mean of 40 is 47.35 and the lower limit is

32.65 and whether the population mean of 50 is included? No. Similarly, 41 will not include

the population mean of 50, because its upper limit is 48.35 and lower limit is 33.65. 42 again

will be having an upper limit close to 50 but not quite 50 yet. So, 49.35 and 34.65, it is not

having the population mean of 50. 

But, if you take a sample mean of 42.65, the upper limit is just touching 50 and the lower

limit is 35.3 and it is including the population mean. Similarly, you go all the way up to 57.35

and the lower limit will just touch 50 and will include the population mean. But, any value

>57.35 will not include the population mean mu. 

So, out of so many confidence intervals, the confidence intervals which are present between

42.65 and  57.35 will  encompass  the  population  mean  of  50  and  the  percentage  of  such

confidence  intervals  falling  between  42.65  and  57.35  will  be  95%  of  all  the  chosen

confidence intervals from the randomly chosen samples of the population. So, we have to



choose a large number of random samples  from the population and calculate  the random

sample means. Using them, we can construct the confidence intervals. 

So,  we  have  a  large  number  of  confidence  intervals  and  if  your  confidence  interval

specification  is  95%,  then  95% of  the  generated  confidence  intervals  will  encompass  or

surround the population mean mu of 50.
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So, after constructing the confidence interval of a given width based on a pre determined

value of alpha, we claim with 100*1-alpha% confidence that the interval contains the elusive

population parameter mu.
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Alpha need not be fixed at 0.05, it may also take 0.025, 0.01 etc. If alpha is 0.01, we are

constructing a 99% confidence interval. So, you can see that, if the alpha of alpha decreases,

our confidence level increases. When the alpha value was 0.05, we had a 95% confidence

interval. If alpha is 0.01, we have a 99% confidence interval. So, when alpha value decreases,

our confidence level increases. So, it looks like, we have to choose a low value of alpha. As

alpha decreases, 100*1-alpha increases.
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But, what about precision, precision means accuracy. What is the precision associated with

the estimate for the chosen level of confidence? What is the relation between precision and

the confidence interval? So, that is what we are going to look at now.
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Broader or wider the interval, we enjoy a higher confidence when stating that the interval

does have the population parameter mu. But, as the interval becomes wider, the precision

suffers. Our interval estimates become less precise, when they become wider. Suppose you do

experiments and very frequently you are told to put the error bars. If the variability around

the experimental points are quiet high, the error bars are quiet wide then, we really do not

know the precise value of the variable we are measuring.
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So, it is important for us to have an estimate of the population mean mu in this case that can

be  cleaned  with  both  high  confidence  and  high  precision.  The  interval  estimate  we  are

proposing should be having a high level of confidence and also a high level of precision. But,

we saw that if we increase the level of confidence then, the precision becomes less. So, how

to have both? It is important for us to have precise estimates of the population parameter so

that our decisions can be made correctly.

(Refer Slide Time: 26:00) 



How do we plan the random sampling? so that the desired confidence as well as desired

precision are both achieved. So, look at the equation the basic equation probability of X bar-Z

alpha/2 sigma/root n<=mu<=X bar + Z alpha/2 sigma/root n and that is=1-alpha.
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We want a high value of 1-alpha but the same time the interval bound on mu should be

narrow. What it means is, we want to have a high value of 1-alpha but the same time, the

interval should be narrow. In other words, the lower limit should be approaching the upper

limit. So that the interval is narrow and our precision improves. On other hand, we also need

to have a high value of 1-alpha so that the probability value and the confidence level increase.

If you chose a lower alpha value, it leads to a higher value of Z alpha/2 and hence the lower

and upper bounds will be moving away from each other. If you reduce the value of alpha, the



Z alpha/2 value based on the standard normal curve will increase. Reduce alpha, Z alpha/2

will increase. When Z alpha/2 increases, -Z alpha/2 will decrease. So, the interval between Z

alpha/2 and -Z alpha/2 will widen.
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How to control the spreading of the interval when alpha value decreases? We have another

handle here that is the sample size n, which is very well in our control. We may require a bit

more investment in having a slightly larger sample size, but, that is going to pay us back in

terms  of  increased  precision.  So,  the  sample  size  has  to  be  so  adjusted  that  we  get  a

predefined error X bar-mu. So, if we decide how far X bar should be away from mu okay. 

It does not mean that we should know mu here. We are only telling how far X bar should be

away from mu and that is a number we are going to project. Then, based on that number, we

have to adjust the sample size n, such that we get both the desired level of confidence as well

as the desired precision.
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So, the error which is defined as X bar-mu should be of a certain limit, which should not be

exceeded. And that error X bar-mu is=Z alpha/2 sigma/root n.
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Again look at the fundamental expression. So, you are having this term, let us take X bar-mu

here, we get Z alpha/2 okay. X bar-mu will then become <=Z alpha/2 sigma/root n. X bar-mu,

the absolute value of which is termed as the error E.
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So, once you have stipulated a value of E and since you already have defined error as Z

alpha/2 sigma/root n, you square this expression, then you get E squared, then we do not have

to use the modulus E squared is  always positive for real  values of E and so we have E

squared=Z  alpha/2  squared  sigma  squared/n.  So,  n=Z  alpha/2  squared  sigma  squared/E

squared. And so, we take n=Z alpha/2 sigma/E whole squared okay. Z alpha/2 is the upper

alpha/2% point of the standard normal. 

Sigma is the known standard deviation of the population and E is the stipulated error.
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So, if X bar is used as an estimate for mu, then we may be 100*1-alpha% confident that the

error given by X bar-mu will not exceed a specified amount E when the sample size is n=Z

alpha/2 sigma/E to the power of 2. So, I will make a small correction here. If X bar is used as



an estimate of mu, then we may be 100*1-alpha% confident that the error given by X bar-mu,

the absolute  value of X bar-mu mind it  will  not  exceed a specified amount  E, when the

sample size is n=Z alpha/2 sigma/E whole squared.
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If the value of n we compute turns out to be a non integer, it must be rounded off to the next

highest integer. After deciding upon the sample size n, we get an interval of length such that it

is twice the stipulated error, that is 2E.
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Here,  it  is  assumed that  the  parent  population  distribution  is  known and specified  to  be

normal. The variance sigma squared of this population distribution is also known.
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The sample  size required  will  increase  when the desired  interval  2E decreases  for  given

values of sigma and the specified confidence. When the standard deviation of the population

increases,  that  means,  there  is  more  spread  in  the  population,  then  the  sample  size  will

increase for a specified value of error and a specified level of confidence okay. 

So, let us say that we say that the error is so much and the confidence interval is 95%, then if

the standard deviation of the population increases, there is more uncertainty there is more

variability around the population mu, then we need to of course invest in a larger sample.
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The sample size also increases when you also want a high level of confidence for a fixed

desired length 2E and a fixed standard deviation sigma. So, when you want to have a higher



value of confidence level for a given precision E and a given standard deviation sigma, then

you have to go for a larger sample size.
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In certain cases, we do not need the upper and lower bounds, it may be enough if you specify

the lower bound on mu or the upper bound on mu.
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Lower bound on mu. Probability of X bar-Z alpha, not Z alpha/2 sigma/root n<=mu=1-alpha.

Please note that, I am using Z alpha and not Z alpha/2 as I was using earlier. That is because I

am now constructing a lower bound on mu. So, this  is termed as a 100*1-alpha% lower

confidence bound for mu.
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Similarly, the upper bound on mu may be defined as probability of mu<=X bar + Z alpha

sigma/root n=1-alpha. This is termed as 100*1-alpha% upper confidence bound for mu. So,

we are chopping of one side of mu and using the other side only and when we do that, we use

alpha and not alpha/2 when finding out the upper % points.
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So, the lower bound on mu may be written as X bar-Z alpha sigma/root n<=mu. Upper bound

on mu may be written as mu<=X bar + Z alpha*sigma/ root n.
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So, let us now come to the actual situation where the population variance is not known okay.

But, let say that we have chosen a large sample. How large is large? In our particular case, let

us say that the sample size is >40. So, the problem of unknown population variance sigma

squared is mitigated or attenuated if you take a large sample. What are the advantages of

taking a large sample? Then we can relax the assumption that the parent population is normal.

The parent population can be anything, it can be normal, it  need not be normal. But, our

sample size is quiet large, then the central limit theorem helps us by saying that, the sampling

distribution of the means is approximately normal irrespective of the shape of the parent

population  distribution.  This  is  very  good.  So,  for  a  large  sample  size,  the  sampling

distribution of the means is normal.
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And previously we had used Z=X bar-mu/sigma/root n. But now, we do not know the value

of sigma. What is to be done? We are having a large sample and the sampling distribution of

the means is normal. So, we can normalize it and convert it into a standard normal variable Z.

but, we do not know sigma. What is o be done, what do we know? We have the sample with

us. With the sample, we have the sample mean, we also have the sample standard deviation S.

So,  instead  of  sigma,  we  can  put  S  here.  And  the  resulting  distribution  will  still  be

approximately normal. So, we can put S instead of sigma and life will be nearly as usual as

before.
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So,  I  am  replacing  S  instead  of  sigma  here  and  so  the  distribution  importantly  is  still

approximately normal. So, I am able to use a standard normal variable Z and that is =X bar-

mu/S/root n.
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So, we are taking a large sample from a population that may or may not be normal. Since the

sample size is large, the condition of a normal original population is not required.
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According to  the  central  limit  theorem,  the  sampling  distribution  of  the  means  is  nearly

normal or approximately normal with mean mu and variance sigma squared/n provided n is

large.
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Since the variance  sigma squared is  unknown, we assume that  the sample distribution is

nearly normally distributed with mean mu and variance S squared/n. We were able to make

this assumption because of the large sample size. So, we can now appreciate the merits in

investing more resources for taking a large sample okay. So, we need not take the entire

population into consideration during the sampling exercise. 

That is not going to be realistic but we can invest on a large sample size. So, a large sample

size helps us to increase the precision of our confidence interval and it also helps us to handle

situations, where the parent population is not normal. It helps us to handle situations, when

the population variance is not known okay. So, when you have a large sample size and the

parent  population  is  not  normal  or  the  parent  population  distribution  is  unknown,  the

sampling distribution of the means become normally distributed. 

If sigma squared is not known, then we have to use S squared. If the population distribution

shape is not known, if the variance sigma squared is not known and we have a large sample

size,  we  can  do  the  following,  we  can  still  assume  approximately  that  the  sampling

distribution of the means is normal.  Number two: instead of sigma squared, which is not

known, we can use S squared. Here S squared is the sample variance.
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So, the large sample confidence interval is now defined for mu as probability of X bar-z

alpha/2  S/root  n<=mu<=X  bar  +  z  alpha/2  S/root  n=1-alpha  and  the  100*1-alpha%

confidence interval on mu is given as X bar -Z alpha/2 S/root n<=mu<=X bar +Z alpha/2

S/root n.
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Similarly, the upper and lower bounds may be defined taking care to replace sigma with s

small s, the sample standard deviation. The sample size should be preferably 40 or more. We

earlier saw that for the central limit theorem to apply, we need a sample size >30. But, since

we do not know sigma, there is additional variability and hence we have to go for a larger

sample size. So, this completes our discussion on confidence intervals. 



This is very, very important because when you look at any statistical software output, you

usually find the 95% confidence interval limits presented. The confidence intervals also have

an important and interesting property. If the lower limit of the confidence interval is negative

and the upper limit of the confidence interval is positive then, it is giving us some important

information okay. For example, it  is like a person when queried, at what time the train is

going to reach the station. 

He says, oh the train has left 5 minutes back or it is expected in 5 minutes’ time. The person

who is listening to this will get completely confused. Is the train going to come or has it

already gone? So, if the lower limit is negative and the upper limit is positive okay then, the 0

value is bounded between the upper and lower limit. So, the population parameter may be 0.

It has certain implications in this design of experiments and in linear regression analysis. 

We may construct the confidence intervals on the model parameters and we may see that the

confidence bounds may be passing through negative as well as positive values. They have

special  significance  attached  to  them.  And  these  are  also  very  helpful  to  interpret  the

statistical estimates of these parameters. So, I will wind up the discussion now. So, I request

you to think about what I have said and please remember that the confidence interval  is

probably bounding the value of mu with the stated level of confidence okay. Thank you.


