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So we wrote down n equations and the moment we have n equations, we think that we can

solve all those equations and get n estimates of the parameters but I told you that even though

we perform n experiments, the number of regression parameters or regression coefficients we

estimate is smaller than n. Essentially, that means we are not solving those n equations and n

unknowns right.

It makes no sense also to have a huge number of parameters in our regression model. We are

having such a large number that they are=the number of experimental observations. We need

only a small set of parameters. So we do not solve those equations simultaneously. We adopt

some other method.

You can solve n equations in n unknowns using the matrix method but we are going to use

another method also involving matrices to get good estimates of the parameters beta hat, beta

0, beta 1 hat, beta 2 hat so on to beta k hat. So we have totally p parameters to estimate,

p=k+1, the k regression coefficients associated with the k regressor variables+the intercept

beta 0 hat, which makes it k+1, we call p=k+1.

All  these  things  are  very  clear.  The  method  we  are  going  to  adopt  is  the  least  squares

estimation technique for the parameter set given by the beta column vector.

(Refer Slide Time: 02:26)



So what we do is we define a function L which is defined as sigma i=1 to n epsilon i squared.

In matrix notation, epsilon i squared may be written as epsilon prime epsilon. This is very

simple. I will explain this.

(Refer Slide Time: 02:54)

Epsilon was given by epsilon 1, epsilon 2 so on to epsilon n. When you take transpose that is

what is given by epsilon prime you get epsilon 1, epsilon 2 so on to epsilon n. So this is n

rows one column, this is one row n column, you cannot do epsilon, epsilon prime because

then you will get n/1*1/n n rows one column, one row n column okay and when you do that

you will get n/n. How is that possible?

Okay epsilon 1 squared and then you will get epsilon 12, so this is not what we want.
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We want epsilon which is 1 by n*n by 1, then these 2 will get canceled out and then you get 1

by 1. What is epsilon prime epsilon? You have epsilon 1, epsilon 2 so on to epsilon n and then

you have epsilon 1, epsilon 2 so on to epsilon n and here you get epsilon 1 squared+epsilon 2

squared+so on to+epsilon n squared. So what is happening is epsilon 1 is multiplied with

epsilon 1 here+epsilon 2 is multiplied with epsilon 2 here so on to epsilon n is multiplied with

epsilon n here.

So that we get sigma epsilon i squared, i running from 1 to n. So what we want to do is we

want to identify the parameters beta such that dou L/dou beta=0. We want to minimize L.

what is L? L is the sum of the square of the errors and what is error? That is very simple.

What is error? This is very important.
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Error  is  Y-beta  X.  We wrote  the  model  Y=beta  X+epsilon.  So the  error  term=Y-beta  X.

Sometimes you may have positive errors, sometimes you may have negative errors and to

account for the error in an impartial manner, we do not want to add the positive errors and the

negative  error  and then  show a net  small  error  or  0  error. We square  the errors,  so that

irrespective of whether the error is positive or negative you are squaring all the errors.

So that all of them become positive and we get a complete total error, so we have sigma

epsilon i squared and that may be written in matrix notation as epsilon prime epsilon. Now

we have the sum of the square of the deviations and we want to minimize that. This is the

good old least squares principle. You might have done that in may be higher secondary or in

the second year of your engineering program.

But the main idea is the same. In matrix notation, we have dou L/dou beta=0, epsilon prime

epsilon is also scalar.

(Refer Slide Time: 07:35)

So you have after the dust has settled down X prime X beta hat=X prime Y or beta hat=X

prime X inverse X prime Y. This is a very famous equation. You can predict the parameters

for your regression model by multiplying X prime Y matrix with X prime X inverse. To find

beta hat we pre-multiply X prime Y with X prime X inverse. So this is going to directly give

us the set of parameters.

I am not giving you the proof and this follows from this relation. So to find beta hat, we pre-

multiply X prime Y with the inverse of X prime X inverse. So if I put X prime X inverse on



both sides, X prime X inverse*X prime X will become the identity matrix and then you have

this matrix inverse multiplying with X prime Y. That will give you directly beta hat. You do

not have to do these calculations by hand.

Sometimes for large matrices finding the inverses may become cumbersome and error prone,

you can use the aid of mathematical software like MATLAB for instance to do the matrix

manipulations.

(Refer Slide Time: 09:28)

So let us look at the dimensions of these matrices. We are having X prime X beta hat=X

prime Y beta hat=X prime X inverse*X prime Y. So are the dimensions consistent, it is a

good time to summarize the dimensions of the different matrices involved. X matrix is having

n rows  and p  columns,  n  experimental  observations  and p  regression  coefficients  or  the

parameters beta 0 so on to beta k which would be k+1 parameters.

X prime X transpose of X multiplying with X, so if X is n/p transpose of X would be p by n.

When I am saying transpose, I am interchanging the rows and columns. So suppose I have a

matrix  with  a  certain  number  of  rows  and certain  number  of  columns.  When I  take  the

transpose of that matrix, I am converting rows into columns and columns into rows. So if I

am having n by p for X matrix the transpose of the X matrix would have dimensions of p by

n.

You had n rows and p columns originally in the X matrix. In the X prime matrix, you have p

rows and n columns because the rows and columns have interchanged. So when I multiply



these two, the n/n cancel out and then we have p cross p. X prime Y would be p cross n as we

saw here and Y is a column vector of n observations so it will be n by 1 so X prime Y would

be p cross 1.

And beta hat would be p cross 1, it is a column vector comprising of p parameters and one

column. The p parameters are arranged row wise and this should be capital Y, which is the

vector of responses, n rows and one column. I will just make it as capital Y.

(Refer Slide Time: 11:41)

So the fitted regression model is given by Y predicted=X beta hat. The difference between the

actual ith observation and the predicted value given above is called as a residual and may be

expressed in matrix notation as e=Y-Y hat. So we have been using epsilon and now I am

using e. There is a reason for this change.

Epsilon represents the true error, the random component of the experiments reflected in the

form of epsilon, the random experimental error but I am using e. I am saying that e is a

residual and that residual may be only due to the random error or it may also be including the

unexplained effects in the experiment because of inadequate modeling okay.

If my model is not fully able to explain the variations in the experimental response, then that

discrepancy  cannot  be  dismissed  as  random  error.  So  my  residual  contains  possibly

unexplained  variability  and also  the  experimental  error,  so  I  am using  e  here.  If  all  the

possible variability has been accounted for in the model, then the residuals would be a true

reflection on the random error component.



(Refer Slide Time: 13:30)

So first we will calculate the error sum of squares. The moment we see the term sum of

squares, we can guess that some analysis of variance is involved. So you have Y-Y hat=e

which is the residual, e prime will become Y prime-Y hat prime and then we have Y prime X

beta hat=beta prime X prime Y but both are the same. Both are the same because both of

them are scalars.

It can be easily shown that Y prime X beta hat is a scalar, it has dimensions of 1 by 1 that

calculation is shown here and then you also have beta prime, X prime Y which is again a

scalar and that dimensions are also shown in this calculation. The n’s will cancel out nicely

leaving 1 by 1 right.
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Now we can show elegantly that the sum of squares of the error is given by Y prime Y-beta

hat prime X prime Y. This is very interesting. Let us see the proof.

(Refer Slide Time: 14:52)

Turn to board and then do the derivation directly so that people who are not familiar with

these can follow the steps. So we have Y-X beta hat prime*Y-X beta hat, so I take the prime

inside and we know that when you take A of B prime this becomes B prime A prime so using

that, there is no problem with Y, it becomes Y prime. X beta hat whole prime becomes beta

hat prime*X prime*Y-X beta prime.

So this becomes Y prime Y-Y prime X beta hat-beta prime X prime Y+beta prime X prime X

beta hat okay. So I am just multiplying the last two terms here. So this will be beta hat prime

X prime X beta hat. So we saw that from the previous slide that Y prime X beta hat=beta

prime X prime Y. So you also have –beta prime X prime Y+you have this term. So these 2

can be written as -2 beta hat prime X prime Y.

So we get Y prime Y-2 beta hat prime X prime Y+beta hat prime X prime X beta hat and we

also know by definition that X prime X beta hat=X prime Y. You may recorrect that, we

found the parameters beta hat by taking X prime X inverse X prime Y, so this is the equation,

which I can use here and that becomes beta hat X prime Y, you have -2 beta hat X prime Y, so

you get Y prime Y-beta hat X prime Y. So this completes the derivation.



This is always good to go to the board and do the derivations. PowerPoint’s also have their

own charm and make teaching more convenient.  In other hand, writing on the board you

make mistakes, you correct the mistakes and learn in the process.

(Refer Slide Time: 18:12)

I hope that you would also feel interested to do the derivations independently on a paper and

see whether your results are matching with the final expected results. So now we are going to

talk  about  a  very  important  property  of  linear  regression  analysis.  It  is  the  variance-

covariance matrix. So obviously we are going to talk about a matrix and we have found the

parameters beta 0, beta 1 so on to beta k.

We want to know how precise these parameter estimates are. So to have an idea about that we

can use the variance-covariance matrix. So let me just introduce the matrix to you and then

we will talk about how to apply it in real regression problems. So the variance of the least

square  estimators  are  the  elements  of  X prime  X inverse  matrix  multiplied  by  the  error

variance sigma squared.

Where  did  we see  sigma squared  previously?  I  showed  a  figure  where  we had the  true

relationship line and we showed the experimental data scattered around this line. We said that

the scatter was described by a probability distribution, which was a normal distribution. The

mean of that distribution was given by the equation but the data was not exactly aligning with

that value given by the equation or the data was not present exactly at the mean value.



But it was present somewhere else because of random effect. This probability distribution

was having a variance sigma squared. All the data points which were scattered around the

true line had the same variance sigma squared. Let me go to that figure again.

(Refer Slide Time: 20:33)

So here we have this particular figure. You have the true line and then you have the data

scattered  around this  line  and the scatter  is  because of experimental  error. The scatter  is

described  in  terms  of  probability  distributions  and  these  are  normal  distributions  most

conveniently and the mean of these distributions are given by the equation. This mean would

be different from this mean.

Because this X value is different from this X value. Here you have one X value, here you

have another X value. Then you have the data points, which are scattered around this and the

probability distribution is having a mean given by beta 0+beta 1X and changes with X but it

has a constant variance sigma squared. This is the sigma squared we are going to use in the

variance-covariance matrix.

So  now  coming  back  to  the  variance-covariance  matrix.  We have  X  prime  X  inverse

multiplied  by sigma squared and that  sigma squared was the constant  error variance  but

unfortunately we do not know sigma squared. We need to estimate the parameters beta 0, beta

1, so on to beta k. We also need to estimate the error variance sigma squared.
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We are having a variance-covariance matrix.  That term implies  that matrix  contains  both

variances as well as covariances. Which are the variances and which are the covariances? The

diagonal  terms  in  this  matrix  X  prime  X  inverse  sigma  squared  matrix  represents  the

variances.  The diagonal  terms  means  first  row, first  column and the second row, second

column, the element corresponding to third row, third column and so on.

So if you look at the matrix, the main diagonal will comprise of the variances of the estimated

parameters. The off-diagonal elements of the variance-covariance matrix will represent the

covariances between the parameters. So just now we are introducing the variance-covariance

matrix. It is important and enough at this point if you understand that the variances are given

by the diagonal terms and the covariances are given by the off-diagonal terms.

And it is also important to note that the variance-covariance matrix is symmetric. What is a

symmetric  matrix? A symmetric  matrix is one whose appearance is unchanged when you

change rows into columns and columns into rows. So you can have a symmetric matrix and

when you interchange the columns and rows it  appears to be just  as the same. It is also

important  to note that the variance-covariance matrix  are simply called as the covariance

matrix.

Sometimes people call it as a variance matrix also. So the covariance matrix dimensions are p

cross p. Do not get confused if sometimes you see variance-covariance matrix or on other

times you see covariance matrix, both are the same.
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Finally, we have come to the form of the variance-covariance matrix or simply the covariance

matrix that is represented by C. It is bold because it indicates a matrix and not a scalar and

here we have X prime X inverse sigma squared. Let us represent the columns of X prime X

inverse as C00 C01 C02 C10 C11 C12 C20 C21 C22. So this represents the diagonal of the

matrix. So C00 C11 and C22 are the diagonal elements of this matrix.

And the off-diagonal elements are given by those entities, which are not along the diagonal.

So all elements other than C00, C11 and C22 are off-diagonal elements. So you have sigma

squared outside. You may as well take sigma squared inside and multiply all these terms with

sigma squared.

So this is a symmetric matrix. What is a symmetric matrix? If I change rows into columns

and columns into rows, the matrix appearance is unchanged that means C01 will be=C10,

C02 will be=C20, if C01=C10 then it would appear as if there is no change. Similarly, C02

will be=C20 and here also C21 will be=C12 and the C20 will be=C02. So then you have a

symmetric matrix.
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And that is what I have represented here. C10=C01, C20=C02, and C21=C12 and this is X

prime X inverse matrix as a symmetric matrix and the variance of the estimated parameters

beta hat are given by the diagonal term sigma squared Cjj where j is=1 or 0 or 2 and the

covariance between two different parameters, beta i and beta j are given by the off-diagonal

terms.

So there is obviously a typo here, which I will correct. So that is what you have here, the

covariance between two different parameters beta i hat and beta j hat will be sigma squared

Cij where i is!=j.
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As I said earlier, we do not know the value of sigma squared and hence we need to have an

estimate for the error variance and we also have to make sure that this estimate is the true

error variance and not have any systematic influences.

(Refer Slide Time: 27:34)

So we want to replace sigma squared by an estimate of sigma squared, we call it as sigma hat

squared. In the true regression model, we had Y=X beta+error, that beta is the column vector

of  true  parameters  describing  the  experimental  phenomena  or  rather  the  phenomena

investigated by the experiments. Since we do the parameter estimation based on the available

experimental data, the influence of errors are also there.

And hence our model is not accounting for the random phenomena. It is only accounting for

the systematic phenomena and hence we are only getting estimates of beta and that is given

by beta hat. Even though we would like beta hat to be as close as possible to beta, we may not

be able to achieve the aim because the data is subject to experimental uncertainty, which is

not included in our regression model okay.

It  is  accounted  for  separately  as  the  error  term.  Similarly, when you want  to  use  sigma

squared, since the true value of sigma squared is not known, we need an estimate of sigma

squared,  which  we use  in  our  calculations  and we call  that  sigma squared  as  sigma hat

squared.

How to find it out? We will see shortly and then once you are able to find sigma hat squared,

the  square  root  of  estimated  variance  of  the  jth  regression  coefficient  is  called  as  the



estimated standard error of the least squares estimator beta hat j. Now we do not use the term

standard deviation here. We are again taking the square root of the estimated variance of the

jth regression coefficient and we call it as estimated standard error. It is not called as standard

deviation.

(Refer Slide Time: 29:57)

So the estimated standard error of the least squares estimator is given by se, se stands for

standard error for beta hat j and that is given by square root of sigma hat squared Cjj. So this j

here is matching with the j’s given here and this is an estimated value and we are using the

variance-covariance diagonal element multiplying it with the estimated error variance and

when we take the square root, we get the standard error of the estimator beta hat j.

How did we get the beta j hat or beta hat j? It is the least square method we adopted to find

this parameter and hence it is called as the least square estimator of beta j and it is represented

by beta hat j.
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The  standard  errors  are  a  measure  of  the  precision  of  the  estimation  for  the  regression

coefficients. Small standard errors imply good precision. So it is a measure of the fuzziness

associated with the estimated regression coefficients. If the fuzziness is too much, then there

is a big spread around the estimated beta hat but if the spread given by the standard error is

quite narrow, then we have estimated beta’s or the beta hats with good precision or reasonable

precision.

(Refer Slide Time: 31:38)

For analysis of variance purposes, the estimation of the residual error is required. In order to

also get an estimate of sigma squared, we need the estimation of residual error. The residual

should ideally reflect the difference due to random factors and not systematic discrepancies

created by using an inadequate model and the residual error is also an unbiased estimator of

sigma squared.



(Refer Slide Time: 32:12)

So we define the error variance in the following manner. We have sigma hat squared=sigma

i=1 to n ei squared/n-p and that is given by sum of square of the error/n-p. It is the difference

between the actual experimental value and the predicated value.

(Refer Slide Time: 32:37)

The error in the column vector form has Y-Y hat experimental vector and this is the model

predicted vector, each entity we may represent it as ei, i running from 1 to n, so it will be Yi-

Y hat i for the residual i or the ith residual. Sum of square of the error is actually given here

itself, i=1 to n Yi-Y hat i whole squared and that is summed to give the sum of square of the

error.
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So if you look at Kutner et al 2004 reference, we can define the covariance matrix or the

variance-covariance matrix as the expected value of beta hat-expected value of beta hat that is

multiplied by again transpose of beta hat-expected value of beta hat. So you have this and we

have to expand it and express it in matrix form.

(Refer Slide Time: 33:45)

So we have expected value of beta 0-beta 0 beta 1 hat–beta 1 beta 2 hat-beta 2 so we have

that matrix multiplying with this matrix comprising of only one row and 3 columns. So we

have transpose of this written here. Transpose I am converting rows into columns so I am

having one  column here  with 3 rows  and converting  it  into  a  matrix  with  1 row and 3

columns. So this becomes beta 0 hat-beta 0 and then this goes to the row element beta 1 hat-

beta 1.



Then it goes to the next row element beta 2 hat-beta 2. So this is what we have. I can first

multiply this and then find the expected value as given by E.

(Refer Slide Time: 34:42)

And also an important thing to realize is the expected value of beta hat is the parameter beta

itself. So this is an unbiased estimator beta hat. Now when we first multiply this, it becomes a

symmetric matrix and the expected value of the diagonal terms will become the variances and

the expected value of the off-diagonal terms will become the covariances.

(Refer Slide Time: 35:21)

So let us do the multiplication, beta 0-beta 0*beta 0 hat-beta 0 that is what you have here.

Beta 0 hat-beta 0*beta 1 hat-beta 1 and that is what you have here. You may want to do the

calculations on your own to see whether you get this particular form. So this term here is=this



term and this term here is=this particular term so the matrix is symmetric, we can show it for

other terms also.

What are the terms we can show? So you have 32 will be=23 third row and second column

element is this that should be=the second row and third column element and that is what these

two  are  matching.  So  we  can  conclude  that  the  matrix  present  inside  the  argument  is

symmetric. Then we apply the expectation to all these elements in the matrix and we know

that the expected value of beta 0 hat-beta 0 squared is nothing but the variance of beta 0 hat

okay.

So that  becomes quite  straight  forward and the off-diagonal  terms will  become expected

value of beta 0 hat-beta 0*beta 1 hat-beta 1 and that would relate to the covariance beta 0 hat

and the beta 1 hat.
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So to find the sigma hat squared, we have sigma i=1 to n ei squared/n-p that is sum of square

of error/n-p. So this is how we are finding an estimate of sigma squared, the error variance

and since we are finding an estimate, we denoted as sigma hat squared and sigma i=1 to n ei

squared/n-p=sum of square of error/n-p, so that is accounted for and then what we do is we

have that value sigma hat squared and then we can multiply all  these elements with that

sigma hat squared.



And then we can find the different variances and covariances of the parameters and their

combinations. So when I multiply this, this would become the variance of beta 0 hat and this

would be the variance of beta 1 hat and so on.

(Refer Slide Time: 38:15)

Now we are going to talk about regression sum of squares and error sum of squares. So what

we do here is we express the deviation between an actual response and the predicted response

in terms of two deviations. Deviation of actual response from mean response and deviation of

predicted response from mean response. So rather than putting it into words let us see in

symbols.
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So first we are expressing the deviation of a particular response from the average value of the

observations. You are conducting all the n experiments and you take the average value of the



response, this is Yi-Y bar and that may be written as Yi-Y hat i+Y hat i-Y bar. This will

cancel out with this, so you will be finally getting Yi-Y bar.

Or we can write this equation involving the deviation of the actual experimental data point

from the predicted value Y hat i as Yi-Y bar-Yi hat-Y bar, so we are defining the residual as

the difference of two entities. Deviation of the experimental observation from the mean value,

deviation of the predicted value from the mean value okay. This is very interesting. Instead of

directly writing Yi-Y hat i, you are writing it as Yi-Y bar-Yi hat or Y hat i-Y bar.

So you are  subtracting  and adding  Y bar  in  this  expression.  So the  residual  which  is  a

discrepancy between the actual experimental value and the predicted value is expressed as the

difference between Yi-Y bar and Yi hat–Y bar. So what is the discrepancy of Yi with respect

to the mean value that I will subtract with the discrepancy between the predicted value and

the average value Y bar.

(Refer Slide Time: 40:57)

So that can be shown graphically in a nice fashion. This is the actual experimental data point

and that is slightly off from the prediction value. This is Yi and then you have Y hat i and this

is  the  average  value  based on all  the  experimental  data  points.  So  we want  to  find  the

deviation between these two the residual that may be expressed as the deviation of Yi with

respect to Y bar-the deviation of Y hat i with respect to Y bar.
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Next, we go to hypothesis testing in linear regression. So we are going to start a new phase in

the regression analysis and it is also interesting to note that whatever we studied in the first

part of statistics for experimentalists are coming into play in the second part as well or in the

second  phase  as  well.  So  now you  will  be  able  to  appreciate  with  your  background  in

inferential statistics on what we are going to do with linear regression.

When we apply those to linear regression, things will become very clear and you also will

understand why we are doing these kinds of tests. So the hypothesis test is what we are going

to study in detail in the next lecture. I request you to not only brush up your fundamentals in

linear algebra but also look at the concepts we covered in hypothesis testing.

Find out what is meant by level of significance, the p value, the region of acceptance, region

of rejection, the confidence intervals. Please refresh your concepts on these topics and if and

once you have done so, whatever we are going to discuss next will become very simple.

Thank you for your attention.


