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Lecture – 42
Regression Analysis: Example Set 8 Continued

Welcome back,  we will  be  continuing  with  our  regression  analysis.  We are  currently  doing

example set 8 and we will continue with the problem we were discussing.

(Refer Slide Time: 00:29)

So we know that the residual sum of squares is an important component in the other analysis as it

is tied down with the prediction capability of the developed regression model.  So higher the

residual sum of squares, higher would be the deviation between the experimental data and the

model predictions. So we have the residual sum of squares as Y prime Y-beta hat 1 prime X1

prime Y for this present case. 

X1 refers to the first regressor variable and the total sum of squares Y prime Y is 494813.74

transpose of Y multiplied by Y. So beta hat 1 prime X1 prime Y based on the matrix will give

you  456196.4.  So  the  difference  between  Y prime  Y and  beta  hat  1  prime  X1 prime  Y is

38617.34.

(Refer Slide Time: 02:01)



So whenever we calculate sum of squares, we also identify the scaling factor or in other words

the degrees of freedom. For the present case, the degrees of freedom would be n-p, we have 2

parameters. So 13-2 = 11 degrees of freedom. The 2 parameters are beta 0 and beta 1. Beta 0

corresponding to the intercept and beta 1 corresponding to the regressor variable X1. So the

mean square error would be sum of squares of error by n-p. 

So we divide the sum of squares, the residual sum of squares which we found out as 38617.34

and that we divide by 11, we get 3510.67.

(Refer Slide Time: 02:58)

Now we will discuss about the calculation of the pure error. So we are trying to do something



different  here.  So  what  we  do  is  when  we  ignore  the  mass  of  the  powder,  it  is  as  if  the

experiments are being repeated. So the experimental settings corresponding to the mass of the

powder are not taken into consideration and so it is as if we are doing some repeats. I request you

to look at the table and confirm this for yourself.

(Refer Slide Time: 03:39)

So we are having the mass of power here and when we ignore the mass of the powder, then for

example if you look at the 3 3 3 and 6 6 6, we are not caring about the mass of the powder and

we have 30 40 50 30 40 50. So it is as if we are repeating the experiments at 30 40 and 50. Same

thing for mass of powder of 9 grams.
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So in this case we are having 45 and 35 at only 2 settings and then you also do at 45 and 35. So if

you ignore the mass of the powder, then it is as if certain experiments have been repeated twice

and certain other experiments have been repeated 3 times. For example, this 30 40 50 is one set

of  conditions,  again  30  40  50,  again  30  40  50.  So  we  have  3  repeats.  When  you  do  the

experiments at 45 and 35, it is as if we are having 2 repeats only. So with this background, let us

go back to the regression analysis.

(Refer Slide Time: 05:07)

The pure error has to be estimated under this artificial situation where we do not account for the

mass of the powder. Please note that as of now we do not know whether the mass of the powder

is having a strong influence on the response of the process but we will just for demonstration

purposes assume that the mass of the powder can be ignored and thereby we are having some

repeats. So we have to calculate the pure error sum of squares. There are couple of ways of doing

it.
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One way is to take sigma i=1 to 5, 5 independent settings and then you have j=1 to m, where m is

the number of repeat observations for every independent setting and then you have Yij-Y bar i

whole squared/N-n where capital N is the total number of runs which is 13 and n is the number

of  independent  settings.  So you get  after  these calculations  are  over, 4827.1,  the number  of

repeats as we just now saw may be either 2 or 3.

(Refer Slide Time: 06:28)

There is another way for calculating the pure error and that is given by sigma i=1 to 5 mu iSi

squared by N-n. For every independent setting, you can calculate the Si squared and then weight

it with the appropriate degrees of freedom, okay. So I request you to carry out this calculation for

yourself and see whether your answers match with mine. So you have the case where you had 3



repeats. 

You have 2 degrees of freedom and for that we had 3 independent settings and then you have 2

cases where you had 1 degree of freedom because there were only 2 entities in that independent

set. So you have 1 and 1. Let me come again. So here i is running from 1 to 5, mu iSi squared/N-

n. So what you do is you calculate the standard deviation or the variance for every independent

dataset, okay. You have 5 independent datasets. So for each dataset, you find out the variance Si

squared for that particular dataset and then you weigh it with the degrees of freedom. 

For the first independent dataset, we had 3 runs and so you have 2 degrees of freedom. For the

second one also,  you have 2 degrees  of  freedom. For the  third one,  you have 2 degrees  of

freedom. Then you had only 2 runs for the fourth dataset and only 2 runs for the fifth dataset and

both of them would hence have only 1 degrees of freedom and then you have the total degrees of

freedom as 2+2=4+2=6+1=7+1=8 and that also leads to 4827.1. So you have 4827.1 by using

this method and you also have the same answer by using a different method.

(Refer Slide Time: 09:01)

So we are now interested in finding the lack of fit sum of squares. We want to see whether our

decision to exclude factor 2 from the modelling analysis was justified. So you have the residual

sum of squares as a combination or additive combination of lack of fit sum of squares, sum of

squares lacks of fit plus pure error sum of squares. This is a very important component and we



are going to compare the lack of fit sum of squares with the pure error sum of squares.

(Refer Slide Time: 09:37)

So you have 38617.34 and then you just now calculated the pure error as 38616.75, sum of

squares as 38616.75 and so the difference between these 2 will give you a lack of fit sum of

squares of 0.59.

(Refer Slide Time: 10:03)

So next we go on to the regression sum of squares. The regression sum of squares after removing

the influence of the intercept beta 0 is given by beta hat 1 prime X1 prime Y-sigma i=1 to n Yi

whole squared/n or this is also = nY bar squared. We have covered this in one of our previous

lectures. So we have the sum of squares of regression as 252.



(Refer Slide Time: 10:36)

So we set up the ANOVA table and so you have regression, residual, lack of fit and error. The

sum of squares whatever we calculated previously, we entered in this table 252 38617.34 0.59

38616.75 and so you have the degrees of freedom as 1 for the only parameter we are interested

in, that is the parameter beta 1 and then you have 11 degrees of freedom for the residual. We saw

it as n-p, where n is the total number of data points which is 13 and then p is the total number of

parameters beta 0 and beta 1, which we are considering now. 

So 13-2 is 11 and then you have the lack of fit sum of squares and the pure error sum of squares.

We saw in our calculation that the errors degrees of freedom was 8. Let me just go back. So you

can see that is 13-5 2+2=4+2=6+1+1=8. We also had this formulae N-n 13-5, total number of

runs 13-number of independent settings 5 and so you have 8. So you can calculate the mean

square and you find the regression mean square, residual mean square and the lack of fit mean

square and pure error mean square. 

To find these, all you have to do is divide the sum of squares by the degrees of freedom and you

will get the corresponding F values and you can see that the p values are pretty high. So it means

that the parameter of beta 1 is pretty much insignificant, okay. So it means that the X1 is actually

contributing little to the model. Let us move on.
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Let us discuss this further. So since the p value is pretty high, the parameter corresponding to X1,

let  me  make  a  small  correction  here.  The  parameter  associated  with  the  X1  is  not  at  all

significant and may be rejected and the regression sum of squares is very small and the residual

sum of squares is pretty high. So this is a kind of very artificial situation where we have removed

the effect of the mass of the powder which probably is having the important say in the process.

(Refer Slide Time: 13:07)

So what we did was to artificially create the repeats and hence we had a very high value of the

pure error sum of squares. Since the pure error sum of squares was very high, it sorts of made the

regression sum of squares corresponding to the parameter beta 1 pretty much insignificant and

also we note that the sum of squares of pure error is not genuine. So rather than being lazy and



not conduct repeats, it is important that we conduct genuine repeats. These are very essential and

we cannot a priori or beforehand assume the insignificance of certain variables, okay.

(Refer Slide Time: 13:55)

So the next step is to demonstrate the extra sum of squares approach. We have the truncated

model in blue and the full model available to us. The truncated model is given by beta hat 0+beta

hat 1X1 and the full model is as of now involving only the main variables X1 and X2. So we

have the full model as of now written down as C hat=beta hat 0+beta hat 1X1+beta hat 2X2,

okay. 

We can of course develop the model  by adding more and more terms like the second-order

interaction terms, the third order interaction terms, the quadratic terms and so on but as of now to

demonstrate the principal of extra sum of squares, we will stick with the model which is having

only the main affects.

(Refer Slide Time: 14:51)



We are now finding the sum of squares of regression due to the beta hat 1 and that is given by

beta hat prime 1X prime 1Y-nY bar squared or sigma i=1 to nYi whole squared/n that comes out

to be 252. So this we saw earlier. Now we want to see the sum of squares of regression due to

beta hat 2, the second parameter, the mass of the powder, given beta hat 1 and that is given as

beta  hat prime X prime Y-nY bar squared-beta hat  prime 1X1 or rather X prime 1Y-nY bar

squared. 

So you can either say it as Sigma i=1 to nYi whole squared by n or nY bar squared. Small n is the

number of data points and this particular summation is the sum of all the responses and then you

square it. This can be shown to be = n*the average of the response squared, okay. So what we do

is we are subtracting these terms in order to remove the influence of the intercept beta 0. This

also we have seen earlier. 

Now we are interested in finding out the sum of squares of regression due to beta hat 2 given that

beta  hat  1  is  already present  in  the  model.  So  we take  the  total  regression  sum of  squares

including all the parameters or the full model and then we subtract it with the regression sum of

squares due to the model having only beta hat 1, okay. In both the cases, we are removing the

influence of the intercept. 

So in this  full  model  also you have the intercept.  In the truncated model  also you have the



intercept.  This  we  also  saw. Even  in  the  truncated  model  involving  only  X1  you  have  the

intercept parameter and even in the full model also, you have the intercept beta hat 0, okay. So

when we do that, we essentially remove the effect of beta hat 0 from both the full model as well

as the truncated model. 

So this difference is the extra sum of squares brought in by the parameter beta hat 2 and that

comes out to be quite significant. You can see that it is adding up to this term is 35043.74 and

then we already found this term to be 252 and this comes out to be 34791.74.

(Refer Slide Time: 18:12)

So the sum of squares of regression beta hat 2 given beta hat 1 is also termed as the extra sum of

squares due to beta hat 2, that is by including the second variable that is the increase in the

regression sum of squares including the variable X2 in the model that is also independent of

mean square error.

(Refer Slide Time: 18:36)



So now we can test the null hypothesis beta 2=0 according to the following relationship. F0 is

sum of squares of regression beta hat 2 given beta hat 1 is already present in the model/the

degrees of freedom due to beta 2 which is nothing but 1 and then we divided it by the mean

square error and we get 34791.74/382.56. So you probably may want to see how you got the

mean square error of 3822.56, okay and this value comes out to be 90.944.

(Refer Slide Time: 19:24)

So the P value associated with this F0 is pretty much close to 0 and hence the null hypothesis

may be rejected. Hence the variable X2 creates a significant contribution to the process.

(Refer Slide Time: 19:44)



Now let us move on to the sequential Model Building. Here we build the models sequentially

and indicate the important effects, okay. So you can add many terms to your already existing

model but please make sure that you have adequate number of experimental data points. If you

have only 5 data points, then you are pretty much saturated with this particular model. What I am

trying to say is make sure that you have adequate degrees of freedom when you are calculating

the regression sum of squares. 

So you can see that this is 1 option, even though we are not going to look at this option. We will

be  looking at  an  addition  to  the  original  model  having  only  the  main  affects.  What  is  that

addition? That addition is simply adding beta hat 12X1X2. So we are now only going to consider

the effect of the interaction between X1 and X2.
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So we will be seeing the effect of adding beta hat 12X1X2 and our motivation or our aim is to

build the model sequentially and indicate whether the additional term is important. So possibility

of  additional  terms  in  the  model  is  many  and  here  we  are  considering  the  second-order

interaction between 1 and 2 regressor variables.

(Refer Slide Time: 21:25)

So when you want to do this in the matrix notation, we add a column vector of X1 and X2. You

have a column vector of settings of X1. You have a column vector of settings of X2. So all you

have to do is multiply the 2 settings X1 and X2 and create a new column vector and this is going

to be an additional column vector in your overall X matrix, okay.

(Refer Slide Time: 22:05)



So we did not treat it as a new model involving X1X2 and find its regression coefficient, okay.

So when you want to find the effect of adding beta hat 12X1X2, what you can do is you can

forget the presence of the other terms, essentially you are considering a model which is having

only beta hat 12X1X2. You may ask what happened to the other models? Is this correct? Okay. It

is as if you are ignoring the presence and contributions of the other 3 entities in the present

model and you are only considering beta hat 12X1X2, okay. 

There is a rider or a condition to this way of doing the regression problem. The condition is it

should be an orthogonal design, okay.

(Refer Slide Time: 23:00)



So our X matrix which we are going to work with is simply the column vector X1X2. We are not

having the columns of ones, we are not having the column corresponding to X1 settings and we

are  not  having  the  columns  corresponding  to  X2  settings.  We are  only  having  the  column

corresponding to X1X2 and you can see that we are having these values and you can see that

when you add this column elements, they add up to 0. 

So you have the Y column vector simply the same as before. It is the column vector of responses

to the experiments at various settings.

(Refer Slide Time: 23:52)

So we can now do the usual matrix manipulations. We can find the X prime X matrix. In our

case, in the present case, it is X1X2 prime X1X2 that is coming out to be 4.25 and then X prime

Y or X1X2 prime Y is -127.5 and you do the estimation of the beta hat 12 and that is X1X2

prime X1X2 inverse X1X2 prime Y. Let me make a small correction here. so here you go. We

know that the parameter or parameters are obtained by X prime X inverse X prime Y, that is a

general formula in matrix approach to linear regression. 

In our present case, the X matrix is X1X2. So we have X1X2 prime X1X2 inverse of the entire

product of the 2 matrices and then you have X prime Y which is nothing but X1X2 prime Y. So

when you carry out this calculation, you will find that beta hat 12 is -30.

(Refer Slide Time: 25:16)



So the sum of squares of regression due to beta hat 12 given that beta hat 0 beta hat 1 and beta

hat 2 are already present in the model, is simply given by beta hat 12X1X2 prime Y which comes

out to 3825. This is due to the contribution from X1X2 and now we have to add the contribution

from the regression sum of squares due to other regression coefficients including the intercept

beta hat 0 to get the regression sum of squares for the full model.

(Refer Slide Time: 25:49)

And the degrees of freedom for the mean square error is 13-4 which is = 9 and there are 4

parameters in the full model, okay.

(Refer Slide Time: 26:04)



So the error sum of squares is Y prime Y-beta hat 12 prime X1X2 prime Y+beta hat prime X

prime Y, okay. This is the sum of squares, regression sum of squares brought out by the regressor

variable  X1X2 and this  is  the regression sum of  squares brought  out  by the original  model

involving only the main affects X1X2, okay and this included beta not. So the regression sum of

squares associated with this beta hat prime X prime Y corresponds to the model beta 0+beta

1X1+beta 2X2, okay. 

Only the main affects model. Then we are adding the X1X2 interaction term to the only main

affects model, okay. So now this represents the full model including the parameter beta 0 beta 1

beta 2 and beta 12. Beta 12 is the coefficient to X1X2 regression variable. This is the total sum of

squares. This is the total regression sum of squares and so you get the sum of squares of error as

0.59. I request you to carry out these calculations independently and see if your answers are

matching with mine.
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So the null hypothesis beta 12=0 may be tested by the statistic. F0=some of squares of regression

beta hat 12 given beta hat 0 beta hat 1 beta hat 2, only 1 parameter, independent parameter is

being tested 1 degree of freedom and then you have the mean square error which is the sum of

squares of the error/the error degrees of freedom and that  comes out to be 58347.5. This is

obviously very highly F value and hence the parameter beta 12 is significant. Please find the P

value for this particular case corresponding to 1 and 9 degrees of freedom.

(Refer Slide Time: 28:30)

In the next analysis, we will be looking at the data if they had not been coded. For some of us, it

would seem like coding is a pain and it is better to directly get a model without coding the data.

Let us see what would happen in such a scenario? So this is the actual data, we have seen the



response to be obtained by varying temperature and mass of powder. So this is the complete

dataset.

(Refer Slide Time: 29:13)

And so what we will do is consider a linear regression model involving only the main affects

only. We are just now doing this for demonstration purposes. We can of course do it for larger

model or a model with more terms but as of now, let us consider it for only a model with main

affects alone. Main affects are temperature and mass of the powder. So let us call it as C hat=beta

hat 0+beta hat 1T+beta hat 2M. Let me correct a typo, okay. So these are regressor variables,

temperature and mass of the powder expressed as they are, okay. 

You can see that the mass of the powder is in the range of 3 to 7.5 whereas the temperature is in

the range of 30 to 50, okay. So an order of magnitude difference is there between the 2 factors. In

other  experiments,  this  difference between the factors  can be quite  significant.  For example,

some factor may be ranging only between 0 and 1 whereas there may be other factors which are

running into the order of 100s or 1000s. 

So you can see that there is going to be a big order of magnitude difference between the various

factors. In such a situation, it is better to do scaling but in the present exercise, we will not do the

scaling or coding and making the values range only between -1 and +1. We will take the values

as they are and see what happens to model.



(Refer Slide Time: 31:08)

So we have the X matrix for the coded case. You can see that all of them are in the same range

between -0.5 to +1, okay. So it  looks pretty neat here but when you look at  the uncoded X

matrix, this is the matrix, the column vector of ones and this is the temperature column and this

is the mass of powder column. So you can see that the values are differing by about 10 and this is

the response vector. We do not really code this response vector. We will just take it as it is.

(Refer Slide Time: 31:56)

And so what we are now doing in the slide is to compare the coded and uncoded results. So you

have X prime X matrix which is a nice diagonal matrix easy to calculate and easy to invert

whereas the uncoded case X prime X matrix is quite ugly and you cannot easily invert it here. To



find the inverse, I can do it with my eyes close. I will just put 1/13 1/7 1/7 here. It is not that

easy, especially if you do not have access to a computer. 

You will have to do the inverse calculations on your own and these numbers are also looking

pretty much different and the off diagonal terms have not vanished and the off diagonal terms are

also present and it is a symmetric matrix Aij is Aji, okay and you can see that there is a big order

of difference between the values. So in the coded case,  the parameters were estimated to be

187.27, -6 and -70.5 whereas in the uncoded case, 352.277 -0.6 and -23.5 and these values are

pretty much different, okay. 

So when you do linear regression, you have to see how the experimenter has treated the data.

Whether he has coded it and got the parameters or whether he has used the data in the raw form

and you cannot expect the same model to be obtained in the coded and uncoded cases.

(Refer Slide Time: 33:40)

So you have the X prime Y matrix and here also you have the X prime Y matrix. They also look

quite different and the parameters are obviously again different.

(Refer Slide Time: 33:53)



So it was seen that beta hat 0 is 187.27 in the coded case which was also the average of the

responses, okay but it is not so in the case of the uncoded case. So the average of responses is

same in both the coded and uncoded cases. There is no doubt about that but the parameter beta

hat 0 in the coded case match to the average of the responses but in the uncoded case, it did not.

(Refer Slide Time: 34:25)

And you how to present the variance-covariance matrix. This also we have seen. We know that

the variance-covariance matrix. The variance of the parameters are given by the diagonal terms

multiplied by the sigma squared whereas the covariances between the parameters are given by

the off diagonal terms and this is a symmetric matrix where C01 is same as C or rather C12 same

as C21. 



Actually we will call this matrix as V. So V12 will be = V21, V13 will be = V31 and so on and

that is why I have put C01 and C01 here, C02 and C02 here and C12 is matching with C12 here.

So it is a symmetric matrix. So we have the variance given by the diagonal elements multiplied

by sigma square and the covariance given by the off diagonal  elements  multiplied by sigma

squared where sigma squared is the error variance.

(Refer Slide Time: 35:19)

So this is the variance-covariance matrix for the coded case. As I said earlier, it is a nice diagonal

matrix.  The off diagonal terms are vanishing. There is no covariances between the estimated

parameters  which  is  a  big  plus  whereas  in  the  uncoded  case,  you  can  see  that  there  is  a

covariance between the estimated parameters.
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So now we have to calculate the error sum of squares, that is because we usually use the error

sum of squares as a surrogate for sigma squared. So the error sum of squares is nothing but Y

prime Y-beta hat uncoded prime X uncoded prime Y. The Y prime Y is the same as it was in the

coded case. You are simply squaring the responses and adding them up and then you also do beta

hat uncoded prime XUC prime Y and that comes out to be 490988.15. 

This is for the model including X1X2 in the main effect form only. We do not consider X1X2 in

this model, in this uncoded case and this 490988.15 is same as in the coded case. So whether you

do coding or not coding, the regression sum of squares and the total sum of squares and the error

sum of squares do not change, okay. So you have sum of squares of error as 3825.593.
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The degrees of freedom is n-p 13-3 which is 10 and so the mean square error is 382.56. So an

estimate of the error variance is given by the mean square error which is sigma hat squared, we

take it as 382.56.

(Refer Slide Time: 37:04)

So we get Sigma hat which is the error standard deviation estimate as 19.56. So this completes

our discussion on the example set 8 for now and the important thing to understand here is the

extra sum of squares concept and the matrix approach to linear regression. You can see that the

matrix  approach  linear  regression  made  everything  elegant,  compact  and  easy  to  execute,

especially for large datasets. 



It is recommended that you do the calculations pertaining to this example problem on your own

and compare  your  answers  will  mine.  This  will  give  you good training  and also make you

confident in analysing problems that may crop up in your own industrial experience or when

doing research. Thank you for your attention.


