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Welcome back in today's lecture, we will be looking at some experimental design strategies.

The references for this lecture are the book written by Meyers Montgomery Anderson Cook,

Response surface methodology, process and product optimization using designed experiments,

3rd edition, John Wiley and Sons, New York, 2009. 
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You may also want to refer to Montgomery design and analysis of experiments, 7th edition,

John Wiley and Sons, New York.

(Refer Slide Time: 00:54)

The importance of central composite design will be stressed upon in this lecture, it is a very

popular second order design used widely in both research and in industry, 3 levels are employed

and there are some features like rotatability and good prediction variance properties.

(Refer Slide Time: 01:28)

The central composite design enables the development of second order model and incorporates

curvature. What is meant by a second order model? So far, we have been looking at the main

factors and the interaction between the factors, when you want to expand in the model space,

the response may show curvature and in the multi-dimensional  coordinate  system, you will

have the response surface in the form of a 3 dimensional surface.



And to describe  such kind of  response surfaces,  we need higher  order  terms  in the  model

equation; second order terms like x1 squared, x2 squared. Usually, we do not go for models

higher than second order unless, it is absolutely essential. So, let us see how we may develop

the  second order  model  using  the  central  composite  design  approach.  This  is  also used  in

Response surface methodology designs, when searching for the optimum.

(Refer Slide Time: 02:52)

So, why do we emphasize so much on second order models? The experimental design space,

the response surface is no longer planar but maybe marked by peaks and or valleys. Second

order models are required to estimate this response and enable the identification of optimum

solution if any.
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Second order models are of the form y is beta0 + i = 1 to k beta I xi sigma i sigma j beta ij xi xj

+ sigma = 1 to k beta ii xi squared and so on, so this is the main factors, this is the interaction;

binary interaction between two factors taken at a time and then you have the second order terms

x1 square, x2 square and so on. This is of course, the error term. So, when you want a fit of

model, you fit one intercept, k main factors, kC2 binary interactions and k second order terms.

(Refer Slide Time: 04:53)

So, that would be 1 + 2k + k * k – 1/ 2 parameters, if k is = 2, you will have 1 + 45 and then 2 *

2/2 is 1 that would be 6 parameters totally you have to estimate. So, those would be beta0, beta

1, beta 2 that makes it 3 and then one interaction term; x1, x2 that makes it 4 and then x1

squared and x2 squared coefficients that makes it 6. So, when we go for central  composite

designs, we are no longer able to retain the orthogonal property.

And we shift our attention from the orthogonal property advantages to the suitable low values

of the scaled prediction variance.  So, when we develop a second order model, we are very

worried  about  its  prediction  capability  and we want  to  make the variance  in  the  predicted

response as low as possible. So, what would be the suitable design strategy, which will bring

down the scaled prediction variance, is our goal.
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What is the structure of the central composite design? So, we add a central and 2k axial or star

points to a 2 factorial design, so let us take a simple case of a factorial design. First, we add

center  points,  we have already seen the center  points at  the geometric  center  of the design

space, they were used to not only get an idea about the experimental error but also regarding the

significance of the curvature in the response.

Then on top of the center points, we also add points along the axis. For a 2 factorial design, we

have to 2 access; the x and y axis or x1 and x2 axis and you put certain points at select locations

on the axis. On each axis, you put one pair of points symmetrically, so when each axis contains

one pair of points for a 2 factor design involving 2 axis; x1 and x2 will have for 4 axial points

totally or 2 pairs of axial points.
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So, the design compresses of 2 power k factorial points, the ones which are located at -1, +1

and so on, nc center points and 2k axial points. So, the center points enable the identification of

curvature in the system, if curvature evidence is irrefutable from a T test or a suitable test. The

axial points enable the efficient identification of the pure quadratic terms, so each point in the

central composite design has its own significance.

(Refer Slide Time: 07:28)

So, what is the central composite design, when looking at it pictorially? You have a central

composite design shown here for 2 factors, these are the points in the experimental space as

usual the 2 power 2 factorial design has 4 corner points each located at -1 and +1, so this would

be -1, 1, 1, 1, 1, -1, -1, -1, the usual factorial design and this is the center points, you can have

more than one center point.
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And then what is unique about the central composite design from the regular factorial design is

the presence of the axis or star points, you can see that each axis, this is the x1 axis is having 2

points located at 1.414 and -1.414. Similarly, you have 2 points located on the y axis or x2 axis

and they  are  also located  at  0,  1.414 and 0,  -1.414.  So,  the  factorial  points  belong to  the

orthogonal and variance optimal class of designs.

And these enable the identification of the main effects. The factorial design we saw comprised

of points, which were located on the extremes of the design space for that particular design -1

and +1 and since the points were located at very far off positions, you can visualize that the x

prime x inverse matrix would be x prime x inverse matrix would be pretty small and that would

reduce the variance of the predictions.

(Refer Slide Time: 09:34)

And hence, it was termed as a variance optimal design, the factorial points are used to find the

main effects and the interactions, you find the main effects and interactions in exactly the same

way as you did for the regular factorial design. The center points also enable the estimation of

the pure error as they represent repeats. So, you need at least 2 or more repeat points and rather

than repeating the experiments at all the factorial points, you may want to do the repeats at the

geometric center.

By this way, you can get an idea about the experimental error and also you can save time on

doing the experiments at the corners of the factorial design of course, that would lead to more

number of runs but in some cases that may be inevitable for the simple reason that certain



research requirements require the reporting of the experimental measurements averaged over

triplicates.

(Refer Slide Time: 10:36)

So, the center points in other cases are helpful to find the experimental error but in addition to

this, they also have another utility. The central points also help in the detection of the second

order or curvature effects but do not help in their explicit individual estimation, center points

also give us a hint on whether curvature effects are important or not and they tell that whether

the curvature is significant, okay.

(Refer Slide Time: 11:24)

But it does not help us to explicitly quantify the curvature, it only indicates whether curvature

should  be  considered  in  the  model  or  not.  So,  in  order  to  identify  the  curvature  effects

explicitly, we require the axial points. Why should the axial points be located at - root 2 or



-1.414, and + root 2 or +1.414, the answer to this would be given shortly. So, the axial points

contribute to the estimation of the individual pure quadratic effects significance.

(Refer Slide Time: 11:39)

And if the axial points were not present only the sum of the quadratic term significance could

be gauged using the center points and the axial points do not contribute to the estimation of the

interaction effects, the central points in the axial points contribute to the flexibility of the central

composite design. So, by adding the new central points and axial points, which are variance or

enhancements to the regular factorial design, we make the experimental design more flexible.

(Refer Slide Time: 12:03)

And so, where do we exactly locate the axial points is the next question, it depends upon the

region of interest  in the experimental space and the number of central  points determine the

distribution of scale, the prediction variance in the region of interest. So, the location of the



axial  points depends on the region of interest  in the experimental  space and the number of

central  points  determines  the  distribution  of  a  scaled  prediction  variance  in  the  region  of

interest.

This is a very important statement because we want to have our model predict uniformly as

much as possible in the entire design space. If the variability in the prediction is unmanageably

high in our design space,  then the models  utility  is  reduced,  it  is  not enough if  the model

predicts well in the center of the region; the center of the geometric design space, the geometric

center of the design space.

But also as we move away from it as we approach the edges of the design space, we want the

variability in the predictions to be kept as low as minimum because we normally want to predict

the response of the experiment at points further and further away from the geometric center, we

may want to even extrapolate sometimes the experimental response beyond the factorial points.

In such cases, if the variances in the predictions keep increasing, then the utility of the model is

lost. So, planning for this, we should see what should be the appropriate design strategy and we

should also consider parameters like number of center points that would reduce or minimize the

scaled prediction variance and an important thing to note here is when you are planning the

design strategy, you do not need the experimental data explicitly.

(Refer Slide Time: 14:54)

You can find the scaled prediction variance even before you carry out the experiments and see

whether  for  the  experimental  strategy, you  have  adopted  the  scaled  prediction  variance  is



manageable and is acceptable. So, what we do is; we add central and the 2k axial or star points

to a 2 power k factorial design. Suppose, you have a central compost design with 3 factors, then

you locate the axial points at + or - alpha 0, 0; 0 + or – alpha, 0 and 0, 0, + or – alpha. 

(Refer Slide Time: 15:35)

How to determine the alpha is an important question? we will answer it shortly. So, the design

comprises of 2 power k regular factorial points nc center points and 2k axial points. So, let us

look at the Minitab output for a central composite design involving 3 factors, you can see the 3

factors  are  represented by x1, x2,  x3 here and then the first  8 experiments  are the regular

factorial design points.

(Refer Slide Time: 16:34)

You can see -1, -1, -1, 1, -1, -1 and so on, then the 8th one is 1, 1, 1, then you have these axial

points, - alpha 0, 0 + alpha 0, 0, 0, - alpha, 0, 0, + alpha 0, 0, 0, - alpha, 0, 0, + alpha where



alpha is 1.68179. What is it special magic number? We have to see shortly and then you have as

many as 6 repeated points at the geometric center of the design. So, let us estimate the model

coefficients, which are in associated with data that are in coded units.

We have to estimate the model coefficients for the experimental data that are in coded units, so

we have to estimate the intercept, main factors, binary interactions and quadratic effects only.

So, in addition to the intercept beta 0, we need to estimate the main factors coefficients, the

coefficients associated with x1, x2, and x3. Then, we have to identify the binary coefficients

associated with the x1 x2, x1 x3, x2 x3.

(Refer Slide Time: 17:36)

And then, we also have to find the coefficients associated with x1 square, x2 square and x3

square. So, the total number of design points is 20, for a 3 factor design with 6 repeats.

(Refer Slide Time: 17:42)



So, you can see that there 20 independent experimental settings that is not correct, it is not 20

independent  experimental  settings,  you have 14 independent  experimental  settings and then

even though, you have 6 repeats that will constitute only one independent experimental setting,

so that would mean 14 + 1, 15 independent experimental settings are there. So, you have total

number of design points as 20.

(Refer Slide Time: 18:44)

The degrees of freedom for model is 19, excluding the intercept and total number of regression

coefficients estimated each with the degree of freedom is 3 + 3 + 3 that is = 8, the remaining

degrees of freedom is 10, so the number of center points is 6, lack of degrees of freedom for

pure error is 6 - 1 which is = 5. So, lack of fit degrees of freedom is = 5, so this is a very

interesting calculation for the degrees of freedom for lack of fit.



So, even though we have fitted 1, 4, 4 + 3, 7; 7 + 3, 10 parameters, the model possibilities are

not exhausted, so there are still some; there is still some scope for expanding the model and

adding more coefficients. What can be the number of coefficients that can be further added to

the  model  has  to  be  first  estimated.  So,  if  you  look  at  the  model,  you  are  having  20

experimental settings but out of that, you are having 14 central composite design points.

The factorial points on the axial points that would be 8 + 6 because you have for 3 factors 2

factorial design, you are having 8 factorial points and for 3 axis, you are having 6 axial points,

so that makes it 8 + 6, 14 and then you are having 6 center points but the center points are

repeats only that means, that would constitute only 1 independent data setting, so in total, we

have something like 14 + 1, which is 15 independent experimental settings.

And if we have already estimated 10 parameters and there are 15 independent experimental

settings, we can quickly say that we can additionally estimate 5 more parameters to the model

that may not be really necessary but it gives us the option of adding another 5 parameters to the

model because of processed knowledge and prior experience, there may be some unusual terms

like x1 x2 squared or x2 squared x3.

This kind of terms may have to be added to the model because of the peculiarities of the process

and then you may need to identify the coefficients associated with those variable combinations.

Hence, we have 5 more degrees of freedom for fitting additional model parameters and this is

nothing but the lack of fit degrees of freedom. Sometimes, even with 10 parameters, there may

be scope for model development.
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And so, the analysis of variance table would indicate that the lack of fit degrees of freedom is

significant and hence we may have to consider adding of more terms to the model. So, the lack

of fit degrees of freedom is 5, as we discussed just now. So, we can fit additionally 5 more

regression coefficients after expanding the model appropriately without the risk of aliasing and

now, the distribution  of  experimental  design points has a  profound influence  on the scaled

prediction variance, okay.

(Refer Slide Time: 22:35)

So, recall  that the model developed is expected to fit the experimental data properly in the

design space. The SPV is a measure of how well the data is fitted by the model. So, these

concepts are very interesting for the simple reason that these are over and above, what we

usually are aware of in experimental design. There are numerous instances of sighting of central

composite designs in research papers and they give the justification that they are being mainly



meant for considering the second order terms in the model but many of these papers do not

discuss further as to why the central  composite  design was chosen among different options

available.

And how good is the prediction capability of the model developed using the central composite

design, so these are probably beyond the scope of the particular research article but it is very

important for us as data analysts and researchers to assess the quality of the developed model,

how good the model is and it is also good to be informed about the limitations of the model in

the design space.

(Refer Slide Time: 24:17)

One important indicator of the limitation of the model in the external design space is this scaled

prediction variance and that is the reason why we are harping on it for so many slides. In some

cases, the model may get frayed at the edges, so that the scale the prediction variance may be

very high at the boundaries, you know the scaled prediction variance may look manageable in

the interior portion of the experimental design space.

As we go further towards the extremes or the boundaries of the experimental design space, the

scaled prediction variance may shoot up very alarmingly and then the model is not very good at

the edges of the design space. In certain cases, there may be problems even at the center of the

experimental  design space;  the scaled prediction variance  may be high at  the center  of the

design space as well.
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And hence to keep it down or control it, we need to increase the number of center points in

certain designs. So, the scaled prediction variance, if you recollect is given by SPV of x is = N,

which is the size of the experimental run, the total  number of runs in the experiment is N,

variance of Y hat X / sigma square and by doing so, we are making the prediction variance

independent of sigma squared, which we do not know anyway.

So, we are also getting rid of sigma squared and we are also scaling the design for the size.

Certain designs, which are having large number of observations, may artificially bring down the

prediction variance because of the large size of the runs. To account for that or to normalized

for this effect, we are multiplying by the term n. As an example, if an experiment is performed

with large number of repeats, let us say 20 experiments have been or let us say 25 experiments

have been performed with large number of repeats.

The prediction variance in such a case would be lower than another experiment,  where the

number of runs was only restricted to 20, so to compensate or account for the size of the run,

we multiplied by n and so the prediction variance, which is multiplied by n and then divided by

sigma squared is termed as the scaled prediction variance and we have already seen how to

determine the scaled prediction variance, we use x prime x inverse matrix.
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And we also take the coordinate at which we want to estimate the scaled prediction variance

and expanded to model space, as was discussed in one of the previous lectures. We introduced

at this point the moment matrix M, which is defined as M is = X prime X/N, we saw that the

variance covariance matrix is given by X prime X inverse sigma square, so the X prime X

inverse or the X prime X matrix is a very, very important term.

Because it captures the essence of your experimental design, whatever design strategy you are

implementing is present in the X prime X matrix and the inversion of that matrix help us not

only to determine the coefficients of the model proposed but also the variability in the model

coefficients and also the variability in the process response. So, these are very significant in

experimental design analysis, experimental data analysis and linear regression.

And in such a context, the X prime X matrix assumes the center stage. So, what is the moment

matrix,  it  is X prime X/ N, for a first  order factorial  design of order k with; that means k

parameters, the moment matrix is identified with an identity matrix of size k/k. Suppose, you

are having the order as, k, the identity matrix would be having order of k/k. So, let us now look

at the second order models more closely.

We define the moment matrix M as X prime X/N, for a first order factorial design of order p,

the moment matrix is the identity matrix of size or dimensions p/p, we recollect that p is = k +

1, where k is the number of regression coefficients; beta hat 1, beta hat 2 and so on to beta hat

k, in addition to the intercept beta hat 0, so we are having p is = k + 1 regression coefficients.

So, the X prime X matrix will also have dimensions of p/p.



(Refer Slide Time: 30:11)

And the moment matrix X prime X/N would be an identity matrix, the X prime X matrix for a

first order factorial design would be a diagonal matrix and when you scale this diagonal matrix

by the total number of runs, we get an identity matrix of dimension p/p. Let us demonstrated

here and we are having the X matrix, which is given by 1, ABC, AB, BC, AC, the 3 binary

interactions and then you have the ternary interaction ABC.

So, this is the X matrix and this is the column of one’s and this is the column containing -1, 1,

-1, 1, -1, -1, 1, 1 and so on, so we have the entire X matrix. To generate AB, we just simply

multiply the elements of the A and B column vectors, similarly for BC and AC and so on and

then you also have ABC, which is 1 because it is -1 * -1, which is +1; 1 * 1 is 1, and so when

we do M is = X prime X/N, we take the transpose of the X matrix.
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And we then multiply with the X matrix again, then divided by the number of settings N, in this

case is = 8; 1, 2, 3, 4, 5, 6, 7, 8 and when we do that the X prime X matrix would be diagonal

matrix having 8, 8, 8 and all that but when you divide it by 8, then it becomes an identity matrix

of dimension 8/8, so very interesting. So, now let us define the different moments, you have the

first moments represented by i and that is given by 1/N sigma u is = 1 up to N Xiu, okay.

Use the index for incrementing from 1 to N and i refers to the ith column or the ith model

parameter for example, if you look at this particular column, if we are talking about X1u, then

we take this column corresponding to all ones in the first index and then u is running from 1 to

N, so we go from X11, X12 so on to X1n, so the simple thing to note here is we are referring to

the ith column and summing over the elements present in the ith column.

So, and that summation is carried over all the experimental settings in the data set and when

you look at the second pure moments, we have no adulteration of i with j and vice versa, i is

present with i and since its present as a couple, it is a second pure moment and how do you find

that? We take the square of the column elements we are choosing, suppose we have chosen

bracket; i close bracket corresponding to the 3rd column, then it would be will go to the 3rd

column in this X matrix.

And then, we will do X31 square, X32 square so on to X3N squared in this matrix, if i were to

be  3.  When you have  second mixed moments,  the  column vectors  we are  considering  are

different from each other, we are conduct; we are considering 2 column vectors and in these 2



column vectors, i and j are different and so we multiply the individual corresponding elements

in each column vector.

So, that we get second mixed moment, this i and j, this i is not = j, i and j are different and

hence it is called as mixed moment and that we do 1/N sigma u is = 1 to N Xiu * Xju, so we

also have the third pure moment i, i and i, which is since it is pure, there is no additional or a

different term in the moment consideration, it is i, i and i that means 1/N sigma u is = 1 to N X

cube iu.

(Refer Slide Time: 35:19)

So, for the ith column vector, we just take the cube of each element in that particular column

vector and then sum it up; sum it up over all the experimental settings and similarly, we can

have all these other moments also, 3rd mixed moment; the total order of the moment is 1 + 1 +

1, which is 3 and mixed moments means, there can be elements, which are different from one

another.

You can have two same elements and then you can have a different element j, so this i’s and j’s

obviously refer to the ith column and the jth column in the moment matrix, so we have 1/N

sigma u is = 1 to N x squared iu and Xju okay. A correction at this point, these not refer to

elements in the moment matrix, they are referring to the elements and column vectors in the X

matrix okay.

We use the elements in the X matrix, we use the column vectors in the X matrix to find the

different moments and if you look at the 3rd mixed moment ijk, it is 1/N sigma u is = 1 to N,



Xiu, Xju, Xku. Fourth pure moments are also possible, where we take the 4th power of the

elements in the ith column vector and then sum it  over the N experimental settings,  fourth

mixed moments would be the presence of different elements.
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Even i square j squared is considered as the 4th mixed moment, even though you are having a 2

of a species or 2 of certain type together and that is; let us say, ii is present together and jj is

present together but since i and j are different, we term it as a 4th order mixed moment and that

would be given by 1/N sigma u is = 1 to N x squared iu x squared ju. So, you can also have ijkl,

where all the elements within the brackets are different.
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So, they obviously refer to different columns, the ith column, jth column, kth column and kth

column in the X matrix and all the i’s, j, k and l are different from one another. Here, we have



the case of i squared jk, the elements again are being different from each other and hence it is

called as a mixed moment. So, for a first order design; a factorial design, the first moment for

any i is 0.

So,  when you are looking at  the X matrix,  if  you look at  any column,  we are not having

columns with the contributions from X i squared like X1 squared or X2 squared, so all the

elements in the X matrix for this case, would be comprising of -1, +1 and so on, except for the

vector of one’s, all other columns would be having -1 and +1 and when you total it up for each

column, it will become 0.

For example, if you look at the main effects; X1 or X2 or X3, each column would be having -1

and +1 in an equal number and so when you take the sum, it will go to 0 and that is what is

meant by the first moment for any i is = 0 for the first order design and the second pure moment

is  unity, you may ask how it  is  possible.  The second pure moment is either  i  squared or j

squared and so each of the -1 or +1 will uniformly become +1 only after squaring.

So, when you are having let us say, 8 runs, you are going to have the sum as 8 but please

remember according to the definition of the second moment, we are; or for that matter any

moment, we are dividing by N, so that 8 will get cancelled with the 8 and hence you will get 1.

So, you can see the second of pure moment is having 1/N here sigma u is = 1 to n Xi squared X

squared iu and so all these things would be 1’s.

And you are adding it up to N times means, you will get N and N/N would be = 1, the second

pure moment is unity that is what we saw just now because we are dividing all the squared

elements with the size of the run and so they cancel out and the resulting answer is just 1. The

first moment is analogous to the sample mean; the second moment is analogous to the sample

variance.
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And this mixed moment is analogous to the sample covariance, for a first order design, the

moments are up to order 2 and for a first order design, the first and second mixed moments also

called as odd moments, at least one variable with the odd power are 0. So, the odd moments are

0, for a first order design. 
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The second pure moment called as even moments or = 1, for the first order design. So, now let

us look at a saturated 2 power 3 factorial design X matrix.
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So, you are having typical pure and mixed moments for 2 power 3 design X matrix and so you

see that the X matrix is having the usual column of 1’s, it is having the column of A, B, C, the

main factors; AB, BC, AC, interactions, ABC, which is the ternary interaction and then you also

have B into AB, C squared, so all these things are created very easily. For example, the column

B AB or B squared A is created by squaring B squared sorry; by squaring B.

So, these values will all become 1 and then multiplying with A, so when you get B square A; 1

* -1 will be -1 and similarly, B Square will be 1 and A would be 1and so you are having +1.

Similarly, you can find out C squared and B squared A would be a 3rd order moment; 3rd order

mixed moment because A is also present here and when you look at the 1st order moments

corresponding to the main factors, when I am totalling all these values it becomes 0.
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And if I am even looking at B squared AB, it is also = 0 because it is having equal number of

minuses and plus here but when I do C squared, it becomes 1 throughout the column and when

I add it up; 1, 2, 3, 4, 5, 6, 7, 8; it becomes 8, the size of the run is also = 8; 8/8 will be = 1 and

that is why you have 1 here. For a central composite design, it can be shown that the moments

are carried over up to order 4 and let us take the design matrix for the central composite design.
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And use it to investigate the values of the different moments. So, for the central composite

design, we can look at the values taken by different moments, all odd moments through order 4

that means orders 1, 2, and 3 are also included, it says that is why through order 4 that is the

moments that contain at least 1 odd power like i or i cube or i square j, so there is at least 1

order power corresponding to the power of j and then ijk.

This is all completely odd moments because i is different from j and j is different from k and i

cube j and i square the jk are 0, for i is not = j not = k, so tables are shown in the next slide as

examples. So, in this design it may be usually visualized that only nonzero moments for k is = 3

are i squared i square j square or i to the power of 4, for all i not = j. So, we will continue on

this topic after taking a break.


