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Let us continue with the discussion on D optimal designs and other optimal designs, looking at

the D optimality value for first order designs, when we take the determinant of the moment

matrix M given as determinants of X prime X/ N power p, where p is the total  number of

parameters we get that as the determinant of the identity matrix of order p, which will be equal

to 1.
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So, for models which discuss the pure first order terms and the first order plus interaction cases,

the value of maximum of Zeta; determinant of m of Zeta is =1, hence the variance optimal

designs are also D optimal in nature. Let us now look at another alphabetical optimal design,

the  A  optimal  design;  this  criterion  addresses  the  issue  of  suitable  estimation  of  the

experimental designs model coefficients.

(Refer Slide Time: 01:46)

It deals with only the individual variances of the regression coefficients and we also note that to

find the variance of the estimated parameters, we refer to the variance covariance matrix and we

look  at  the  diagonal  terms  of  this  matrix  and  those  are  the  variances  of  the  regression

coefficients. So, the diagonal elements have to be multiplied by sigma square, the error variance

to get the variance of the estimated parameters.
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Now, how do we define  the A optimality  criterion?  It  is  defined as  identify  the minimum

corresponding to the trace of M of Zeta inverse, so what we are doing is; we are looking at the

trace elements of the M of Zeta inverse matrix and we want to minimize the values of the

diagonal terms, okay and here trace represents the sum of variances of the coefficients weighted

by N.

(Refer Slide Time: 03:26)

So, there are some experimental  design based computer  software that use A optimality  and

previously, we have talked in length about the scaled prediction variance and it  is a useful

measure of performance.  The variances of the predictions should be kept under control and

even if there are certain regions, where they become unbounded, then we have to relook at the;

relook the experimental design strategy.
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And scaled prediction variance control helps us to make reliable predictions in the experimental

design space. There are many experimental designs and in the analysis unfortunately, the scaled

prediction variance is not given as much attention as it should be.

(Refer Slide Time: 04:34)

So, related to the scaled prediction variance is the G optimality criterion and the objective of

this  is to protect  against  the worst  case variance prediction.  So, the model should not only

predict well at the design points but also at all other points in the design space and we will

assume that the factors are all quantitative and the G optimality criterion is given by identifying

the scaled prediction variance in the experimental design space and finding the maximum value

of that.
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Then, our aim is to find the design Zeta such that the maximum value of the scaled prediction

variance is minimized okay, so the objective of the G optimality criterion is to minimize the

maximum value of the scaled prediction variance, so which is the design that is going to meet

this criterion and for the G optimality criterion, we have to identify a region. Usually the region

is cubicle in nature or spherical in nature.

So, we can expect the G optimal criterion as N Xm prime X prime X inverse Xm and try to find

within the region of interest R, which is the maximum value and then identify the design Zeta

such that the maximum value of the scaled prediction variance is minimized. A small typo is

there, I just corrected, so now the inverse is expressed properly. So, what we are just doing here

is substituting for the scaled prediction variance.
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So,  when  the  assumption  that  the  errors  are  independent  and  have  equal  variances  is  a

reasonable one, we can see what is the minimum limit for the maximum value of the scaled

prediction variance, so the region are of interest; the maximum value of the scale the prediction

variance of x will be > or = p, so the minimum value would be p, where p is the number of

parameters.

And the maximum value can be higher than the lower limit; higher than this lower limit of p,

the  number  of  parameters  including  the  intercept  beta  hat  0.  Now, we  can  define  the  G

efficiency; my target is to have the maximum value of the scaled prediction variance to be as

low  as  possible  and  it  should  be  p,  this  is  the  lower  limit  but  the  actual  design  under

consideration based on several factors, may have a different value.

(Refer Slide Time: 08:21)

And that value would be higher than the value of p and the ratio of p to the maximum value of

the scaled prediction variance for this particular design under consideration is termed as the G

efficiency. So, let us see what is the G optimality criterion for 2 power 2 design considering

only the main factors and not even looking at the interactions, the number of parameters is 3

that is also = p.
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And the design space is bounded by + or - 1 for all  the variables x. The scaled prediction

variance is given by N into variance of Y hat x/ sigma square and we get N Xm prime X prime

X inverse Xm, we have divided by sigma square because we do not know the value and that

does  not  really  depend  upon the  design,  it  depends  upon the  actual  experiment  once  it  is

performed, it depends upon the error variance, which is assumed to be constant at sigma square.

We do not know the value but for evaluating different designs, we do not need it and so we

divide by sigma square and get rid of it and then, you can also have an artificially created small

scaled prediction variance by having a design with large number of values. So, N would be

there and where N is the size of the run and by now, you can show that N X prime X inverse for

the design under consideration is I3, which is the identity matrix of order 3; 3 rows and 3

columns.

So, you may want to check what would be the N for the 2 power 2 designs that I think you will

figure out by now and you can also see, what is the terms coming in the diagonal? Well, the

answer is very straightforward; we are going to have a 4 run experiment because it is a 2 power

2 design, so the size of the run would be 4. So, the scaled prediction variance is related to Xm

prime and that Xm prime is the coordinate point expanded to model space.

So, we have a scaled prediction variance comprising of Xm prime that is written as 1x1 x2; 1

corresponds to the intercept  because we are going to multiply this  1 with the intercept,  x1

would be corresponding to the setting of factor A, x2 would be corresponding to the setting for



factor B and then we have a I3, which is the diagonal matrix; identity matrix with diagonal

elements of 1, order is 3.
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And then you also have Xm, which is converting this matrix into its transpose, so 1x1 x2 along

the rows will become 1x1 x2 along the column and so you have the scaled prediction variance

of x as 1 + x1 square + x2 square and in the design space of interest, our design is a 2 power 2

factorial design, where all the factorial points are located at +1 or -1, so x1 square will be 1, x2

square will be again 1.

(Refer Slide Time: 12:02)

So, you will have 1 + 1 + 1, which is 3 and that is exactly equal to the number of parameters

which  are  being  estimated,  so,  we have  p  is  =  3.  Now, the  G efficiency  criterion  for  this

particular design would be 3/3 that is the p, which is the number of parameters, in the maximum



value of the scaled prediction variance in the region of interest. For the previous design, the

maximum value of SPV is = 3.

(Refer Slide Time: 12:32)

And so, we have a G efficiency of 1, so the D optimal design is also G optimal for this case and

in the same fashion, it is easy to show that the first order design in k design variables for the

cuboidal regions, where the design points are located at + or -1 only that means all the points

are at their extremes in the design space at 2 level design of for a solution > or = 3, results in a

maximum X belonging to R SPV of x is = p okay.

(Refer Slide Time: 13:47)

So, a 2 level design means factorial design with 2 levels and the resolution > or = 3, you please

refer  to  the  lecture  on  fractional  factorial  designs,  where  the  design  resolutions  have  been

discussed and hence all these orthogonal designs; 2 level orthogonal designs with resolutions >



or = 3, would result in G optimal one for the first order model. Now, let us look at yet another

optimality criterion, this is called as the V optimality criterion.

(Refer Slide Time: 14:20)

And the basis for this is to consider the prediction variance at a selected set of coordinates

representing different points that are of interest to the experimenter in the design region, so we

identify some coordinates in the design space which are of certain interest. This is coordinate 1;

x1, coordinate 2, x2 so on to r such coordinates in the design space and how to choose those

points? 

There is no hard and fast rule here at set of test points from which the design was selected or it

could be coordinates that have some specific importance to the experimenter and so any design

that minimizes the average prediction variance over the set of m points is said to be a V optimal

design. So, actually there is a typo here, which it should be R, I just make that correction.
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When we look at the related criterion called as the I optimality criterion and the objective of

this is to produce or provide a single measure of the models prediction performance by means

of an averaging process. So, the averaging is carried out over a certain region of interest R and

the moment we have averaging it also implies integration over a continuous domain and then

after carrying out the required integration using the suitable function, we divided by the volume

of the region R and we get the average.

(Refer Slide Time: 16:01)

This is a standard mathematical procedure for finding out average, so let us look at the integral

over the region of interest that gives the volume of the region and that is = K, the I integral

criterion is identify the design such that it minimizes the average given by 1/ K integral over R

scaled the prediction variance of x dx and that is denoted by the design Zeta such that it takes a

minimum value of I of Zeta, where I refers to the integral the integral is given here.



(Refer Slide Time: 16:45)

1/K integration over R scaled prediction variance of x dx, so we are substituting the definition

for SPV into the integral and we get this. So earlier, we had N * X prime X inverse but from the

definition for m, which is = X prime X/ N, so X prime X inverse * N will be m of Zeta inverse,

so this derivation is pretty straightforward and that is why instead of having X prime X inverse

* N.

(Refer Slide Time: 17:55)

In addition to the other 2 terms, we have m of Zeta inverse and that is the I of Zeta, the integral

value for a particular design under consideration and we have to identify the design such that

the integral is minimized, so even though these mathematical formulae look a bit formidable,

the meanings are pretty straightforward. So, you can build even more sophistication into this



approach by assigning weights to certain  points  in the domain or coordinates  the domains,

which perhaps are more valuable than other points.

(Refer Slide Time: 18:27)

So, it is very design specific and after this definition, it is up to the individual experimental

program, where this may be applied. So, the I optimality criterion is a reasonable method for

deciding upon the suitable experimental design; designs based on this criteria of good average

SPV are expected to yield the satisfactory results throughout the design space. However, the D

optimality criterion is more popular.

(Refer Slide Time: 18:53)

And the G optimality as well as the I optimality criterions are not as popular as the D optimality

one. So, we also have the I efficiency criterion, we divide; we define a particular optimality

criterion and then we also try to find the efficiency. So, we have seen that the I optimality



criterion was given according to this integral and we can also find the minimum value of such

an integral, what design will give you the minimum value.

(Refer Slide Time: 19:51)

And then the actual value I of Zeta star for a particular reason, I have chosen, I will get a certain

value of I of Zeta star, after the averaging is done. Then I compare it with the minimum value of

I of Zeta;  I compare it with the design, which is going to give me for the same number of

variables, a minimum value of I of Zeta. The ratio of the 2 is termed as the I efficiency. So, we

have used simple first order models to illustrate different optimality criteria.

Just to see how to carry out the different matrix operations; the inverse of the matrix operations

and then, how the integration has been done and so on, so the design optimality criterion is very

interesting and a very useful concept. It gives you additional insight or information to your

experimental  design,  there  is  more  to  every  experimental  design  than  simply  finding  the

regression model or the equation describing the designs performance over the design space.

So, the objective is much deeper than that, after all we are developing only a simple regression

model; straightforward regression one getting some statistical parameters and finding which of

them are significant,  which of the coefficients  are significant.  So,  over and above all  these

things we have to look at how good the model is in the design space and we have to a priori feel

or select a model which will give us the desired features.

So, lot of planning is there in the choice of the experimental design, so up front we have to ask

ourselves what do we want out of this  model and based on that we can develop a suitable



optimality criterion and see which model or design will fit into that will give a desirable value

of  the  optimality  criterion  and  there  is  no  one  single  optimality  criterion,  there  are  many

optimality criterions and we can choose one, which is closest to our expectation.

(Refer Slide Time: 21:56)

And the design of experiments and response surface methodology are becoming very popular

due to many software availability and also it is not that difficult to apply the different optimality

criteria, so we have a lot of flexibility in choosing a particular experimental model. We know,

we  are  not  constrained  to  select  one  particular  model  because  that  is  being  commonly  or

popularly used in the literature.
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So,  we  need  good  designs  that  perform  satisfactorily  over  a  wide  variety  of  possible

circumstances and designs, which are optimized over a narrow value of idealized conditions

and assumptions are of little value.

(Refer Slide Time: 22:38)

So, the first order models including the interactions between the various factors, the standard

designs are optimal. However, the standard response surface methodology designs like the Box

Benkhen design or the central composite design are rarely optimal for the second order case

even though, they have several desirable features.

(Refer Slide Time: 23:00)

And for the purpose of response surface methodology analysis, we more frequently resort to the

central  composite  design  or  the  Box Benkhen design  strategy  and  they  should  be  used  or

considered whenever possible.
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And there may be many situations, where the CCD or the BBD may not be implemented, these

could be due to constraints or unusual design sizes; constraints can be; you may not be able to

perform certain  experiments  along  the  axial  nodes,  which  is  recommended  by  the  central

composite design.  So, when we are not able to do the standard designs, we have to go for

computer generated designs that are based on certain optimality  criteria,  we have discussed

previously, okay.

(Refer Slide Time: 24:03)

So, there is a table,  which is given by Myers et al,  2009, which compares typical standard

second order designs for a spherical region. I am just giving an illustrative summary for a more

complete summary; you may refer to the reference book.
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So, we can compare standard designs, I have only chosen the central composite and the Box

Benkhen design, you can see an additional parameter, which is the number of center runs, nc, k

refers to the number of factors in the design; 2 factors, 3 factors, 4 factors, then we have the

different designs and you can see that the D efficiency as well as the G efficiency have been

listed, for number of center points = 1, the D efficiency is 98.62.

But the G efficiency is 66.67%, when you increase the number of center points, the D efficiency

slightly reduces from 98.6 to 96.9, whereas the G efficiency dramatically improves to 87.27

from 66.67 and then, for k is = 3, you have an experimental size of 15, for a central composite

design with only 1 center point, the D efficiency is quite high but the G efficiency is pretty low.

When you increase the number of center points, again the D efficiency slightly falls off but the

G efficiency improves dramatically. For a Box Benkhen design, even though you have only 1

center point, the G efficiency is quite a decent and when you actually increase the number of

center points, both the D efficiency and the G efficiency decrease for the Box Benkhen design.

For a Box Benkhen design with the nc is = 1, the D efficiency is quite okay at 97.
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But when you increase the number of center points to 3, it drops slightly to 93.82, whereas the

G efficiency, which was quite low to start with,  with 1 center point has now reduced even

further to 66.67 and then with 4 factors, the central composite design and Box Benkhen design

give pretty much the same D efficiency and G efficiency. So, it appears that increasing the

number of center points in the CCD or BBD is not really good.

Because the optimality criteria may decline, so when we went from one center point to 3 center

points, the Box Benkhen designs; D efficiency and G efficiency actually declined and here also

for the central composite design increasing the number of center points from 1 to 3 actually did

reduce the D efficiency percentage but on the other hand, the G efficiency percentage increased,

so the moral of this table is both the optimality criteria need not go in the same direction.
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If one increases, the other may decrease but we cannot rule out the center points because the

larger the number of center points, the more would be the degrees of freedom for pure error. It

also helps to estimate the pure error and when there are more center points, you can estimate the

pure error component more reliably and it also helps to stabilize the scaled prediction variance.

(Refer Slide Time: 28:14)

So, when the CCD had only one center run, the G efficiency was quite low, so when only one

center run was there, the G efficiency was quite low at 66.67. For this spherical design, when

the center run is absent, the X prime X matrix may be singular or near singular and that was not

acceptable. 

(Refer Slide Time: 28:42)

So, the use of only a single center point leads to a large SPV of x in the design center as the

number of central points increase, these prediction variance becomes more stable and the G and



D criteria  react  adversely to the presence  of  many center  points  due to  the nature  of  their

definitions, you can see in the Box Benkhen design, even the D efficiency reduced from 97 to

93.82, when you increase the number of center points from 1 to 3.

(Refer Slide Time: 29:30)

So, that is because of their nature of their derivations and we have seen that the standard RSM

designs are reasonably close to the best optimal design in the D optimal or the G optimal sense,

for  example  when you look at  4  factors  central  composite  or  Box Benkhen design,  the  D

efficiency is close to 100% and the G efficiency is also close to 100%, so the CCD and the

BBD designs would be used, when there are more number of factors that we considered.

And they are pretty efficient and it does not mean that you should always get all the criteria to

be close to 100%, whenever you are going with less number of factors okay. Even for a smaller

number of factors, the D efficiency values are pretty high; it is only the G efficiency, which are

quite low for cases involving less number of center points. So, there is no one hard and fast rule

or magic rule to get the best design.

And another thing to notice the 2 criteria, which are very commonly used do not show us the

stability of the scaled prediction of variance in the design space. So, just relying on a single

value of the D optimality criterion is not recommended and the design is multi dimensional in

character  and we cannot  go with only one criterion,  we should actually  look at  the scaled

prediction variance in the design region.
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So, in addition to the different optimality criteria, we should also pay attention to the prediction

capability of the model in the design space. So, how to represent the scaled prediction variance

for a 2 dimensional problem involving only 2 variables; 2 factors; A and B or x1 and x2, the

scaled prediction variance is quite easy to plot but when you have more number of parameters,

it is not easy.

(Refer Slide Time: 31:56)

And also instead of sigma square, we use the s square, which is the mean square error, so we

use variance of Y hat of x and estimated value of that that is why it is represented as variance of

Y hat of x hat and instead of using sigma square here, we use s square. So, now we are talking

about this scaled prediction variance estimation or the estimated scaled prediction variance.
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So, in addition  to the optimality  criterion,  we also have to pay a closer  look at  the scaled

prediction variance. So, from graphical methods, we aim to get a bird's eye view of the scaled

prediction variance of the entire design space irrespective of the number of factors and the

number of center points and so if we are able to represent even for multi dimensional cases, the

distribution of the scaled prediction variance in the design space, we can have overall view or a

bird's eye view on how good the design is.
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How good the design is performing at different locations in the experimental space. So, we can

see which regions in the design predict poorly or nicely and it also helps us to see how the non

design points or future points in the design space get predicted.
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So, when you look at CCD and BBD from the scaled prediction variance point of view, the Box

Benkhen design has superior minimum prediction of SPV of x at the cost of inferior maximum

prediction at the edge of the design space. So, what this means is; BBD ensures that the scaled

prediction variance is quite small at the interior of the design space but the SPV actually blows

up, when you go to the extremes or the boundaries of your design space.
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So,  at  the design edge,  the scaled  prediction  variance  of  x  is  pretty  high but  only a  small

proportion of the design region have these high values and the G efficiency, which considers

only the maximum SPV of x may be quite deceptive as it does not consider what is happening

in  the  interior  of  the  design  space.  So,  a  single  number  efficiency  hence  cannot  be  truly

reflective of what is happening in the entire design space.
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Mostly the maximum scaled prediction variance of x in a second order design occurs at the

design boundary or at the design perimeter. So, the G efficiency criterion reflects on what is

happening at the edge of the design only.
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So, I have just given you an illustration or a brief introduction to the scaled prediction variance

distribution in the design space, it is important for us to represent it graphically and there are

certain graphs called as the variance dispersion graph and the fraction of design space plots

okay, they are somewhat difficult to plot and they cannot be done manually in most cases and

we have the resort to statistical software, which can plot these fractional design space plots and

variance dispersion graphs.



So, I have given only a brief overview on some of the advanced features of experimental design

but this introduction should form the suitable basis for further reading. So, we have come to the

end of the introduction to advanced or optimal design concepts, so this may be the starting point

for a further advanced course on statistical design of experiments. So, I have given a complete

overview of the basic statistical principles that are involved in design of experiments, looked at

some popular design of experiment techniques.

And finally given an introduction to the more advanced experimental design strategies, so, we

have now a good background and knowledge of conventional design strategies and also the

capability to read or no further on advanced experimental design concepts. So, I will conclude

at this point and in the final lecture next, I will summarize whatever we have covered in this

course. Thank you for your attention.


