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Lecture – 28
Governing equations for Rheometry

In the course so far, we have a looked at various variables of interest for Rheology such as

stress strain rate. We have also taken a look at some of the flows which are of interest in

Rheology. The so called the Viscometric or Rheometric flows. And in these set of lectures we

will get familiarized with the governing equations for Rheometry. 

In our course on Rheology we may not get a chance to solve many equations to justify, how

the Rheological analysis is done in terms of fluid mechanics, because our emphasis in this

course is more on analyzing the geological properties; however, it is helpful for us to know

what are the governing equations  and given the type of flows that we are imposing in a

particular Rheological Rheometric geometry or in a particular type of flow we should have a

physical picture in terms of what is the type of flow that has been imposed.

And therefore, along with this we should also know; what are the basic governing equations

which can be used to describe the overall flow? So, in these set of lectures.
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We will look at these governing equations we will start with a small discussion on transport

theorem because that is essential to develop all the governing equations. The 2 governing

equations that are of most relevance in this course on Rheology are mass balance and the

linear momentum balance. 

So,  we  will  discuss  both  of  these  and  more  importantly  we  will  also  see  the  detailed

components of these balances in the three coordinate systems rectangular, cylindrical  and

spherical. As these are the coordinate systems which are most commonly useful in solving

several flow problems. And then we will end with looking at the solu the governing equations

for a Newtonian fluid incompressible Newtonian fluid and those are navier stokes equations 

So, let us begin with the idea of an integral where the limit themselves are functions of time.
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So, if you see here we have an integral of a function f and this function is depends on x as

well as time. And we want it is integral over a limit x. So, essentially what we are looking at

is some function.
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Which is a function of x and time also. And so, this at one particular time this is how the

function varies, but it is a function of time also. So, therefore, at a next instant of time we

may actually have a different realization. So, this is at one particular time at some other time

the function may be some because this is another instance of time, and now we are interested

in evaluating such functions with limits. Let us say a and b.

Now, what if these limits themselves are also function of time so which implies that in the

next instant of time the limit may be here and it may be here. So, therefore, we are interested

in knowing this integral f of x dx from a to b, but a and b are themselves functions of time 

So, therefore, in this case evaluation of this integral is not a problem because we know the

limits though they are functions of time now in all the governing equations that we derive for

the continuum mechanics we are interested in knowing the rate of change of quantities. So,

for example, if this is density and this is volume then density into volume this will give the

overall mass, and from conservation of mass we know that the overall mass will be 0 the rate

of change overall mass will be 0. 

So, therefore,  we say that D by Dt of overall mass will be 0. So, it is of interest  to find

derivatives of such integrals. So, D by Dt of this integral will have to be evaluated. Now the

evaluation of this integral derivative of this integral is tricky because we want the derivative,

but the limits themselves are also function of time. So, Leibniz rule which has derived from it



can be also called chain rule is gives us a rule how to solve these kind of integrals and their

derivatives. 

So, the rule is as follows that the derivative of an integral can be written in terms of 2 terms.

One term is related to the derivative of the function itself over the same domain. So, the

domain here is now from a to b. So, basically, we are interested in solving problem from a to

b. So, therefore, the domain is a to b. So, we evaluate the rate of change of f as a function of

or the derivative of f as a function of time over all this domain. 

And now the other term is this combination of these 2 terms, in which case we look at the

value of f at the boundary. So, this is the first boundary and then we look at the rate of change

of b itself. Similarly, the other combined term is the value of function at another boundary

and the rate of change of that boundary. 

When we have let us say these boundaries are fixed and a and b are constant they do not

change with time then of  course,  these values  go to  0,  and in  that  case we can actually

interchange the integral  and derivative sign and in that  case this  integral  is  equal  to this

integral, but in general as I mentioned for the governing equations related to mass balance,

momentum balance, energy balance we will have the limits and the limits usually are the

material  volume itself  and that  material  volume can change  due  to  deformation  and the

various other phenomena which happen a during the transport phenomena that takes place in

the material and therefore, we will have the limits function of time. 
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So, based on Leibniz rule we can derive what is called the Renee Reynolds transport theorem

and this is what is used to derive mass balance momentum balance and energy balance. Eta is

basically a quantity of interest and based on whatever we choose for eta then we can write the

governing  equation  for  using  Reynolds  transport  theorem using  the  terms  that  I  already

described. 

So, basically if eta is equal to 1 then we can see that this is rho dVx and therefore, it will be

the mass. So, we can have various options for eta. So, for example, if eta is chosen as one

then the overall integral becomes rho dVx. So, this is nothing but mass similarly if we choose

eta as the velocity in that case it becomes rho v dVx and this is nothing but momentum, if we

choose let us say eta to be energy which we indicate as u internal energy then we have rho u

dVx and that becomes internal energy. 

So, therefore, depending on what we are interested in, we can choose several terms and get a

balance for that particular quantity now the interpretation of these 3 terms are as follows the

term, first term is the rate of change of property for a given material volume we denote it

using D subs superscript t because this is a function of time, given that there are processes

taking place in the material and the due to deformation expansion contraction the this will not

remain the same and therefore, it is itself is a function of time. 

And so, this is now related to 2 terms one which is the partial derivative of this integral. So,

therefore, we can exchange the integral and the partial derivative sign. And so, it becomes

derivative  of  this  quantity  itself.  So,  this  is  the  change  of  material  contained  within  the

volume keeping the control volume fixed. 

And then the third term which is the effectively the flow of that particular quantity because

rho  v  times  dA is  actually  the  overall  amount  of  the  how the  material  volume itself  is

changing.
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So, for example, if we take a material volume and this is let us say D superscript t and it is

area is given by s super script t and if we take any one particular point in in that particular

point let us say this is the unit normal and then the overall. So, n dx is this elemental area. 

And now if we see what is the velocity. So, let us assume that velocity at this point is some.

So, therefore, v dot ndAx is basically the rate of change of material volume at this point. So,

therefore, that is what we have in the third term. So, v dot dAx where dAx is nothing but. So,

dAx is nothing but n times dAx.

So, therefore, term 3 indicates the change of property due to material flux at the boundaries of

material volume, or we can also interpret it in terms of material or material property leaving

and  entering  the  fixed  control  volume.  So,  therefore,  based  on  this  Reynolds  transport

theorem we can derive mass balance and linear momentum balance the angular momentum

balance  and  energy  balance,  in  the  course  on  Rheology  we  will  assume  the  angular

momentum balance to show that the stress tensor is symmetric. So, therefore, we will not

solve angular momentum we will use it always saying that stress tensor is symmetric.

Similarly, most of the flow problems that we will solve we will assume isothermal conditions.

So, that temperature is uniform and therefore, we will not solve problems related to energy

balance, but; however, given that in Rheology we will impose different types of flow on the

material we will be interested in solving mass balance and momentum balance 
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So, the let us begin with mass balance the overall a differential statement of mass balance is

that the rate of change of density is related to divergence of the density times velocity. So, it

could be written in this form also where there is a term which signifies the velocity into

gradient of density and density into divergence of velocity. 

When we know that it is an incompressible fluid then what happens is the density is constant

and therefore, these 2 terms go to 0; in that case we know that the overall only divergence of

velocity is 0. So, this is the governing equation in case we have incompressible fluid. Many

of the materials that we investigate either macromolecular systems or multi-phase systems

generally are incompressible and therefore, the overall mass balance for most Rheometric

flows is divergence of velocity 0. 
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If we look at the overall equation in terms of the 3 coordinate systems which we will most

commonly use the governing equations are given as follows. So, in rectangular coordinates

we have the terms in cylindrical coordinates, we have to be always careful in terms of the

additional terms which are there because of the curvilinear nature of these coordinates, these

equations  could  also  be  written  in  generalized  coordinates  for  example,  in  convected

coordinate system; however, given that most of the engineering geometries that are used in

Rheology will either be of these 3 we generally tend to use these 3 coordinate systems in

describing the Rheological problems 

Given that in spherical coordinate system also we have the r theta phi and 1 over r sine theta

and these terms we have to be always careful in terms of using these governing equations

when  we  compare  their  use  with  respect  to  rectangular  coordinates.  So,  when  we  use

cylindrical  and  spherical  coordinates  there  are  always  additional  terms  because  of  the

curvilinear nature of the coordinates. 
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And if we have incompressible fluid then the terms involving derivatives of density either

time derivative or the gradient of density if go to 0 and therefore, we have divergence of

velocity 0, which again is simple in case of rectangular coordinates has few additional terms

because  of  the  curvilinear  coordinate  system and  both  in  case  of  cylindrical  as  well  as

spherical.

And just to see applications of these for a certain set of flows we can consider let us say a

Rheometric flow which is extensional flow. So, in this case let us say we have a VZ as a

function of Z. So, we have seen that if you have let us say a cuboid of material and let us say

we are pulling the cuboid of material in Z direction. So, this we will take it as Z direction and

given that we are pulling this material what we will expect this as a function of time the

material will be moving in Z direction therefore, it will become longer in Z direction because

it is moving in this direction and since it is moving in Z direction it will move inward in x and

y direction.

So, therefore,  we will  also have Vx and Vy. So, we have basically  in this  case all  the 3

components. And so, if you look at now the mass balance for this particular situation we have

del Vx by del x plus del Vy by del y plus del VZ by del Z equal to 0. And so, we have all the

3 terms and only thing we can ensure is the fact that the overall  sum needs to be 0. So,

whichever way Vx changes whichever way Vy changes whichever way Vz changes they have

to all balance out using the according to mass balance. 



So, in this case Vx is basically a function of x only Vy is a function of y only because a we

are assuming that the overall shape of the fluid element remains the same it is cuboid here

also and it remains the same cuboid at any other instants of time also. So, given this what we

can see is if I just draw a hypothetical plate in this case I can see that this point here and this

point here which have 2 different x and y coordinates both of them have the same velocity

Vz.  So,  given that  this  point  and this  point  have  the  same velocity  Vz Vz can most  be

function of Z. 

So, similarly we will also have Vx at most function of x and this function of Vy so. In fact,

we can write Vz as a function of z we can say that this is being pulled at a constant rate such

that  we have  del  Vz by del  z  as  a  constant  value,  and given  this  is  the  constant  value

therefore, we can solve and then say that Vz will be a function of z in a given way. 

So,  immediately  when  we get  this  and given that  the  flows  are  identical  in  the  other  2

direction we could say that del Vx by del x will be same as del Vy by del y because the flow

is identical in the 2 directions and similarly Vx and Vy will also vary similarly. So, let us see

what is meant by this similar variation. 

Given that the flow is overall same in the 2 direction we can see that del Vx by del y del Vx

by del x and del Vy by del y will both be equal to minus epsilon 2 by 2, based on mass

balance because if you look at the mass balance equation what we have is the following we

have based on this we have the fact that; del Vx by del x plus del Vy by del y and these 2 are

same plus epsilon dot is equal to 0. Since both of these are same we get that del Vx by del x

is equal to minus epsilon 2 by 2. 

So, if you look at the overall equation this is epsilon 2 by 2 plus minus epsilon 2 by 2 plus

epsilon dot and therefore, this is identically equal to 0. So, we can see how the governing

equation the mass balance is useful in analyzing elongational flow in Z direction. We can

similarly talk about a situation where there is a cylindrical coordinate system involved and let

us say we are looking at a parallel plate geometry 
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In this case what we have is a shaft which is attached to a plate and this plate is being rotated

and below we have another plate, and between the 2 plates we have fluid being kept. So, this

is the fluid in between 2 plates. So, if I take a side view of this geometry from this side what I

will be able to draw is the following that I have the top plate and I have the bottom plate and

then the fluid is there in between so this is the fluid and the top plate of course, is being

rotated. 

So, in this case we can again choose a coordinate system such that this is the z direction this

is the r direction and this is the theta direction. So, in this case again one can look at what will

be the nature of mass balance. So, in this case since there is only theta motion we have only v

theta being nonzero. So, the overall velocity components vr as well as Vz are 0 because there

is no motion in z direction no motion in r direction. So, therefore, vr as well as Vz is 0. 

So, if you now go back and look at what does the mass balance say since vr and Vz are 0 we

do not really have to take into account them. And so, if you look at this this itself will go to 0

and Vz also will go to 0 and we get the obvious statement that del v theta by del theta is 0.

So, v theta which is the only nonzero velocity is not a function of theta. So, v theta is not a

function of theta. 

So, therefore, we can state using mass balance that v theta will only be a function of r and Z.

Now again it helps us to look at as to why this could be the case given that the top plate is

rotating at any point the velocity is going to be let us say this rotation rate is omega. So,



anywhere velocity is going to be omega r. So, therefore, if you look at any fluid element here

it is going to be driven based on this rotational velocity and of course, the bottom plate is

stationary. So, since the bottom plate is not moving. 

So, in this case velocity at the bottom plate is going to be 0 so we can clearly see that velocity

will depend on z also velocity will depend on r also. So, using the mass balance the most

simplification that we can achieve is to say that the overall velocity in this Rheological flow

will be a function of r and Z. 

So,  similarly  we can use different  versions of these mass  balance  in different  coordinate

system depending on whatever is the geometry of interest.
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So now let us look at the linear momentum balance this is also called the conservation of

linear momentum of course, which is also a statement of Newton’s second law. Newton’s

second law states that the mass times acceleration is overall sum of forces and as we have

seen in this course earlier that in our case we will have body forces and the contact forces.

And  so,  this  sum of  these  will  have  to  be  mass  into  acceleration.  So,  this  is  basically

Newton’s second law. 

So, the statement of this and using Reynolds transport theorem we can simplify the governing

equations  and  the  overall  differential  statement  of  the  Newton’s  second  law  or  linear

momentum balance is also called equation of motion. So, in this case we have several terms



let us first look at the right-hand side we have already said that we talked about 2 forces body

forces and contact forces, and as we have seen the contact forces will be divided in 2 parts

one is the isotropic pressure and the other one is deviatoric stress. 

So, therefore, we have one term which is associated with gradient of pressure and the another

term which is associated with divergence of stress now in this course we are going to use

angular momentum balance to say that the stress tensor is symmetric. So, therefore, the tau

transpose will be same as tau 

So, in many governing equations you might see that the transpose is not written only the

stress tensor itself is written, since the stress tensor is symmetric it does not matter in this

case whether you write a tau transpose or tau itself. And the left-hand side when we look we

have a set of terms which are associated with the inertia. These are the non-linear terms also

if you can see here velocity and gradient the derivatives of velocity are multiplying each

other and these are the terms which are very significant when Reynolds number is high. 

Quite often in Rheometric analysis Reynolds number will be low and therefore, we may not

have these terms contributing to most types of flows. In Rheology it is our endeavor to keeps

flow as simple as possible. So, that we can try to characterize the state of stress very well.

And so, in general the geometries are designed in such a way that inertial terms are negligible

and as we know the inertial term are defined based on the Reynolds number. 

So, inertial terms are defined based on the Reynolds number. And so, quite often or most

often Reynolds number will  be very low for your metric  flows, and given that Reynolds

number is rho dv by mu since viscosity is generally very high for many of the paste like

materials for polymer melts or for other multi-phase systems Reynolds number is likely to be

lower. 

Similarly, the density of course, we many of these material systems will have density which

is if they are water-based systems then they will have density close to water slightly higher

depending on water other ingredients are there, similarly if they are oil-based system then

again density is going to be similar order of magnitude. Even if you have added let us say

metallic particles in some fluid the density will increase, but again we are going to look at

densities of the order of magnitude of density remains very similar. 



So, density by itself does not have a huge role to play in terms of determining the overall

Reynolds number for the flow. So, the other 2 conditions which we have to be very careful in

terms  of  manipulation  is  the  size  characteristic  size  and  the  other  one  is  characteristic

velocity.
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So, in Rheology we have to ensure that the characteristic size of the geometry is such that

Reynolds number is kept low, similarly the velocity which is being used it we also have to

ensure that it is very low.
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So, in general whenever we do Rheology the gap in the geometry, right? Which is what is the

characteristic dimension so it is generally very low and. In fact, it is the order generally of the

order of millimeter or less millimeter to in fact, micron so this is the range of gap. And so,

based on this we can also see that velocity value will also have to be low. So, that we cannot

use  very  high  rates  of  rotation  or  if  we  are  using  oscillation  we  cannot  use  very  high

frequencies so generally very high rotation rate or oscillation rate should be avoided. 

So, using this we then can ensure that Reynolds number is low and therefore, the inertial term

is not as significant. Based on this then generally the governing equation which is used for

oscillatory  shear  will  have  a  velocity  which  might  be  a  function  of  time and for  steady

viscometric flows the velocity will not be a function of time and therefore, we have only the

gradient of pressure and divergence of stress balancing each other. 

So, using this governing equation where we do not know this how the tau varies because in

Rheology we may not know how the; for a new material what the stress tensor is how does it

vary. So now, in the next segment of the class; we will try to look at some of these governing

equations for few example Rheometric flows.


