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But let's go to this quick definition of Linear Time Invariant System from a frequency domain viewpoint. 
We made a remark that any Linear Time Invariant System will produce stable, stable LTI system will 
produce a sinusoidal waveform, after the transients have died down. Whenever the input is a sinusoidal 
but the most important thing is, it will produce sinusoid of the same frequency, only with amplitude and 
phase being modified.

(Refer Slide Time: 00:48)

You can now state that as both necessary and sufficient conditions, a system is set to be stable LTI 
although I've not mentioned here stable, but it's implicitly understood it is stable an LTI, if the sine wave 
of frequency omega at the input produces a sinusoidal waveform of same frequency at the output after a 
sufficiently long time. This is one way of checking for LTI nature of the system. If I want to see how, 
whether the system is linear, in fact, this is used for testing nonlinearities and time varying nature of 
systems.

For example if I had a very simple system let's say y k equals u square k. Is it time variant or time 
invariant? Is it time invariant? What about linearity? Non-linear. So let's inject a sine wave at the input 
side. Right? What output would you obtain? We will get sine square omega. But you see always we look 
at frequency content from the eyes of Fourier. Right? It is like, I do not know what the frequency content 
is, but I'll turn to Fourier.

In many movies, if the hero is blind, heroine would come and say ,"See through my eyes. See the world 
through my eyes." Right? You have to make this subject entertaining. So you always draw parallels with 
entertainment. So it's like this, I do not know what the frequency content is, Fourier is giving us the eyes 
to see the frequency content. So from the eyes of Fourier. So like that here, you see from the eyes of 
Fourier , sine square omega appears as sine 2 omega or cosine 2 omega, whatever it is. But the fact is that 
when I look at the power spectrum, I'll see a peak at 2 omega in sort of omega.



Why that is happening? Because from the eyes of Fourier , the world is always made up of sines and 
cosines. You should not blame him. That is how the Fourier transform works. If you don't like it. Leave it.
But that is how it is and all power spectral analyzers are based on that concept, imagination. So a sine of 
frequency omega from the eyes of Fourier appears as sinusoidal waveform of double the frequency. So 
new frequency has appeared in the output which is not present in the input, that's a sign of non-linearity

That's a mark of non-linearity. It's not always that the old frequency will vanish. In fact, if you had a cube 
here what would you see? What frequencies would you see in the output? Omega and 3 omega. Right? So
you will see a fundamental and then a harmonic. Okay. So, just to tell you that any violation of linearity, 
I've only talked about violation of linearity, what a violation of linearity leads to. But you can show even 
if the time invariant nature is violated, you will see new frequencies appearing. When no new frequency 
appears then we say the system is empty LT.

Okay. We are only talking a frequency. You're not worried about the strengths and phases and so on. Any 
questions? Good. So we have talked about the filtering viewpoint. As I said there are four different filters,
low pass filter, high Pass filter, band pass or band reject and all pass filter.
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All these names are given based on how the amplitude ratio looks like as a function of omega. What kind 
of a filter is pure delay? All pass. It allows all frequencies to go through without any preferential 
treatment. Correct? So you should be familiar with all of this.
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Now let's look at this simple example, then I'll show you how to generate step impulse and bode in 
MATLAB. For a given LTI system. So it's a very simple example. It's the same system that we considered
earlier, the first order system. Right? It says in equation eight. So let me take you back to equation 8.
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All right. So this is the system's impulse response description now. You understand now that with this 
definition that we have here, I definitely need to know the impulse response. Either it should be given to 
me directly or I should be able to infer it from the input-output equation. Remember that. So quickly, I 
plug in this g k into the definition of FRF. Always the starting point is that. When I do that, I end up with 
this result.

(Refer Slide Time: 06:05)

So that is the expression that I get. You should be comfortable with dealing with complex numbers. It's 
not as complex as you imagine. It's fairly simple. That's it. So assuming that mod a is less than 1. I'm 
already given that, I can now write a simple and a single expression for this summation and from this I 
can derive the amplitude ratio and the phase. So, all this pure algebra there and mathematics.

So magnitude is given by this expression and phase is given by this expression. When you are computing 
phase, please remember that it is inverse tan imaginary by real and you have to be comfortable with that. 
So if you're uncomfortable, please do go through some practice of computing phases of complex 
numbers. Okay. So if I were to plot this now, you should also be able to draw a hand sketch. When you 
are drawing a hand sketch, you should be able to, you know, you should just pick some key points on the 
omega like omega 0, omega pi by 4, pi by 2 for which you know the cosine values. Hopefully you 
remember. And then simply draw the amplitude ratio.

Phase is typically lot more complicated to draw by hand. But you can still obtain some asymptotic points 
in the sense as omega goes to zero. What is it at omega goes to pi and so on. Now comes the most 
important part of the FRD. One of the most important aspects of FRF particularly for discrete time 
systems that you should remember, you cannot forget without fail. 



So if we look at this definition here, one of the things that clearly falls out of the definition is that the FRF
is periodic. So G of e to the j omega plus 2 pi. From this definition I can straightaway see that it is minus 
j. Is that clear, because in place of omega, if I have omega plus 2 pi, I have an additional multiplication 
factor here e to the minus j 2 pi by k. What is e to the minus j 2 pi k? k is an integer. Zero would be nice 
one.

So we say FRF is periodic for discrete-time systems only, is periodic with a period 2pi. Again for this 
discrete-time LTI systems. You should remember this fact. You should remember it forever. All right. 
What does it? Why is this occurring? It is occurring because of the nature of the complex sine waves, e to 
the minus j omega itself is periodic with a period 2 pi. Okay. Why this discrete-time nature is making a 
difference.

In fact a lot of the theory that you're learning for discrete-time systems is equally valid for continuous 
time systems as well. You should remember that fact as well. Which means, for continuous time systems 
also there exist, a notion of FRF, where [10:01 inaudible] we say simply G of omega to distinguish, I will 
use big omega. And here the definition would be based on the continuous time Fourier transform.

By the way, what are the units of omega in all of this in our analysis until now? You can amplify it, you 
can amplify your answer. What is it?

Radians per second.

Radians per second?

Radians per sample.

Radians per second. It's not Radians per second. You're dealing with samples. If it was per second then 
you wouldn't have a problem with cancellation of units here. Right. You can you can show that also at a 
later time when I talk of sampling and discretization, at that time it will becomes clear, why omega has 
units of radians per sample in the discrete-time world. In the continuous time world, what are the units of 
this big omega? Radians per time. Whatever that time is, units of time but in discrete-time it's always 
radians per sample. If the sampling interval is one second then the units are radians per second.

So this result here clearly says that for discrete time systems I need to only look at FRF between minus pi 
and pi or 0 to 2 pi. Any interval of length 2 pi is sufficient. Typically, we consider minus pi to pi and the 
good news is, the amplitude ratio is symmetric. In other words, if I were to draw, sketch the amplitude 
ratio between minus pi to pi, it would look the same with respect to the origin. So I just need to plot 
amplitude ratio from 0 to pi. You understand?

You check for yourself. Why the amplitude ratio is symmetric. But always remember this fact that 
whether it's a discrete-time system or a discrete-time signal, if the discrete-times we plot FRFs only up to 
0 to pi, that is amplitude ratio. And you can say, omega in the interval minus pi to pi. If it is a signal we 
carry out our power spectral analysis also in the same range. We don't, it doesn't mean it doesn't exist 
beyond. It's just a repetition. So there is no point.



So don't be under the impression that it's not defined beyond, this periodic. It's just going to repeat what's 
the point in analyzing. It is, this is not true for continuous time systems. You can see, if I ask you whether 
G of omega plus 2 pi, is it the same as G of big omega. Is this true? What do you think? Yes or no? How 
do you verify? Why so much silence? How did we verify this?

Substitute there. So substitute here. What do you will get here? You'll get an additional factor of e to the 
minus j 2 pi t. Will that be 1? That tells you the prime difference between the behavior of discrete-time 
and continuous time systems. Why? Because in continuous time, t is on the real axis. Whereas in the 
discrete-time k is on the integer axis. Right? Why is k on the integer axis because it's a sampling instant. 
So there is another way of saying what we have said just now. We say that sampling introduces 
periodicity.

Let me write that. Sampling in time, in fact, I'm going to actually avoid the time thing, because you will 
see shortly that this is true even vice-versa. Sampling introduces periodicity. Very, very, important 
statement to remember. I didn't say sampling in time introduces periodicity in frequency. I didn't say that. 
I simply said sampling introduces periodicity because you will see later that, we may also have to sample 
in frequency which introduces periodicity in time. This is a very important statement to remember when it
comes to frequency domain analysis or in general.

Yeah you can say frequency domain analysis of discrete-time systems. Okay. So how do these plots look 
like? The amplitude ratio looks as follows. As you see on the screen.
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And the phase also looks like this here. What kind of a filter is this system? It's a low pass filter. Good. It's
a first order system and if you change the value of a. So should play around with this example. I'll post the
slides. So play around with this example and see how the amplitude ratio looks like when you change the 



value of a. I've given you the value of a here. Right? I don't know how well you can see. But let me zoom 
here minus 05. All right.

Change the sign and see what happens in your exploration. See whether the amplitude ratio changes 
whether it becomes some other kind of filter and so on. How do you generate bode plots and step 
response plots and impulse response plots in MATLAB. Well, there are two ways of doing it. One you can
use a step impulse and bode routines respectively in MATLAB. They are a part of both control systems 
toolbox as well as a [16:19 inaudible] tool box. Doesn't matter where they come from, these are the three 
commands. Step, impulse and bode. In all of this you have to pass on the LTI system object. 

You have to define the LTI system first and then only you ask for the response. The other option is to use 
this semi GUI I would say, is LTI view. If type LTI view it will bring up this. Let me quickly show you 
that in MATLAB. No I said you can bring up the LTI viewer and it's brought by typing LTI view and it 
launches this. This I close. It's okay. 

Now at the moment it's a clean slate. I have to pass on the system that I want to analyze. Now, what I've 
done is, I've taken one system which has an FIR system. And this is an FIR system. That is how you 
define. Remember we talked about transfer functions. So one way of creating an LTI object is use the tf 
routine. Where you encode the impulse response coefficients. What is the transfer function? It consists of 
a numerator and denominator. And it is expressed in terms of q instead of q inverse or z, instead of z 
inverse.

(Refer Slide Time: 17:52)

So first you write down your impulse response function. In this case it's FIR model. On many occasions 
you may be given difference equation form from where you have to convert it into transfer function form.
How do you do that? You use your q inverse operator or q operator. Write it in numerator, denominator 



form. Like I showed you in the liquid level case study. Here this is an FIR model and the model that I 
want to look at is as follows. I hopefully I can later. So g k is 1, 0.8 and 0.5. The rest of them are zeros. 
It's understood, it's only the three impulse response coefficients are significant.

Now when I write this, what this means is, in form of input-output equation, it means that y k is u k plus 
0.8 u k minus 1 plus 0.5 u k minus 2. And in terms of the shift operator this is nothing but 1 plus 0.8 q 
inverse plus 0.5 q inverse square operating on u k. And although I say transfer function, it's okay to deal 
with transfer operators. So G of q inverse is in this case 1 plus 0.8 q inverse plus 0.5 q inverse square. 
However what MATLAB expects is, in terms of q rather than q inverse square. Actually it is expecting in 
terms of z, but for the moment we'll keep aside that z part. 

So you rewrite this in terms of q just for the sake of keying into the MATLAB. So you have q square plus 
0.8 q plus 0.5 by q square. So in other words, had use a forward shift operator. You would have obtained 
this. And that is. And then you enter the numerator polynomial coefficients and the denominator 
polynomial coefficients in that order. And tell tf that you are dealing with a discrete-time system. So the 
first argument here is a numerator 1, 0.8, 0.5. Is everybody able to see it see?

Okay. And denominator is 1 0 0. So you have to provide the coefficients in the decreasing order of the 
polynomial, here numerator and denominator. And the last one argument here that you see as 1 is a 
sampling interval. That doesn't matter, at the moment you have to provide some sampling interval there to
tf that you're dealing with a discrete-time system. If you do not provide that it will assume it's a 
continuous time system. Please remember that.

So let's ask how what Gd1 looks like. Whether it is exactly what I want and it is. Right? Now I go to LTI 
view. And file, say import. There was another system that I've created but I will not show that at the 
moment. So it's a Gd1. I think it's too smaller font size. But you list the objects that you have, LTI objects 
that you have. And I'm picking Gd1. And you should be clear now what plot it is showing. What do you 
think it is showing, step, impulse frequency response? What kind of a response is this? Step. Very good.

I can change now by right clicking and choosing from the plot type, right clicking will bring you the 
menu. And by default it shows the step, you can ask for impulse. It's a discrete-time system therefore it 
will not connect by lines. It's going to at least give you a staircase plot. Okay? Now, let's move on quickly
to frequency response plot where we look at bode. This is how the board block looks like. Let me 
maximize.
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So, on the top you have amplitude ratio. It's not exactly amplitude ratio, you see something of that 
magnitude which is in decibels. Decibel is 20 times log 10 of AR. So it is not exactly plotting AR of 
omega. It's plotting 20 times log 10 AR. And this 20 log 10 AR has units of decibels in honor of 
Alexander Graham Bell. And we talk of always intensities and so on in terms of decibels. And phase is 
here plotted in terms of degrees not in terms of radians.

You can see that the system has a low pass kind of characterization. You see that and then phase goes 
from here 0. Up to what point? Are you able to see the value? Minus 60. Right? So it goes up to that 
point. But you can see the amplitude ratio being flat for a range of frequencies and then it starts to roll off.
That range of frequencies or which you see amplitude ratio being flat and a bit of a roll off, roughly is a 
bandwidth of the system. After that there is significant attenuation.

So if you're going to perform an experiment to identify the system your input should have frequencies in 
that range. If you consider other beyond that then it's a waste of effort because the system is not going to 
respond. I'll just conclude by showing you again here a different system. It is nothing but delayed, the 
impulse response is delayed by a certain factor here .So what I'm doing here is now and delaying the 
impulse response by two units as you can see from the denominator. How much delay have I introduced? 
As you can see, delay of two units. The denominator has to change from z square to z power 4. What 
impact do you expect to see on the bode plot with respect to the first system. Before you plot, you should 
ask yourself always this question.

What impact, I mean, what kind of bode plot should I expect to see qualitatively. Which plot will change?
Phase. Correct. The other plot will remain unaltered. So you choose the second one and it shows both. 
You can of course choose not to have one of them but you can see the phase plot has no changed but the 
amplitude ratio plot remains unaltered. And you can also place your cursor and you can ask for points 



here. For example, here I can go to a specific curve and ask for the information. In fact I can have my 
grind on I can ask many, many characteristics and so on. 

But for a single curve. In fact, on any single curve, try this. Somehow it's not working here. You can place
the cursor on the curve and ask for information there. It will tell you, what is the x axis value, what is the 
y axis value for with system and so on. This is how you play around with this LTI view. Get a feel of 
different systems. This may be useful for your assignment as well. Right? Now there's one point with 
which I'll close. I'll just take half a minute and then we'll close. Get back to the presentation here.

So, there is another way of defining FRF which will sow the seed for the discussion the next class, which 
is that it is a ration of the Fourier transforms of the output and input. Discrete-time Fourier transforms of 
the output and input. Where does this definition come from? Until now we have talked about FRF. Now 
I'm just turning to an alternative definition of FRF. The definition that we have seen is that, it is a discrete 
time Fourier transform of the impulse response. Right. But no I'm saying that the same FRF can be 
defined in a different way that it is the ratio of discrete-time Fourier transforms of output to the input. 
Where does this come from? It actually comes from convolution equation.

You start with the convolution equation. Take the discrete time Fourier transform on both sides of the 
convolution equation and use the property of Fourier transforms that the Fourier transforms of a 
convolution is a product. So you will end up with this kind of relation y of omega is G of e to the minus 
the j omega times u of omega. Even in this definition implicitly it is assumed that the system is stable, 
because only the system is stable, the left hand side which is y of omega will exist. Otherwise y k will run
away with time. Okay. It is also implicitly assumed there.

What we will discuss next class is the practical definition of FRF that we work with. Both this and the 
earlier definition assume that I have in finite time with me. That means, I have infinite data with me, a 
both input and output which I don't. So how do I deal with finite data? What happens when I play this 
definition in practice? We will come across what is known as an empirical transfer function or empirical 
frequency response function. And I'll show you some examples there. With that we will close the 
discussion on FRF. Okay. Thank you.


