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Very good morning. Okay. So there are only two things that we want to talk about and then we'll close the

curtains on state-space models for now. One is to look at the stability state, the stability condition in terms



of the state-space model. Earlier we have learned to give stability conditions in terms of impulsive 

response and then in terms of poles of G. Now it's time to talk of stability in terms of state-space model. 

And the other thing that we need to look at is, when you have delays I promised to talk about it to show 

you how delays increase the number of states when you write in the standard state-space form. Then we'll 

conclude the discussion with why and when we generally look down to state-space models instead of 

transfer function models.

So let's look at, this as a very simple concept here. The main result to remember is polls of G of z are the 

eigenvalues of the state-space matrix A. I have gotten myself back to single input-single output system. 

That is why you see G no longer being bold. Only they say that you become bold when you are together, 

when you're in unity. Right? When you have many people then you can do all the dadagiri that you want. 

That's why you become bold, here it is single input-single output, poor thing doesn't have enough strength

so it loses its boldness. That is the idea behind the notation also. That is only my theory. Okay. Don't get 

carried away with that.

Anyway poles of G are the eigenvalues of state-space matrix. That's fairly easy to see, if you go back to 

this relation here. Right? You have a z I minus A inverse appearing when you go from state to transfer 

function.

(Refer Slide Time 01:54)



How do you write inverse of z I minus A, adjoint of z I minus a by determinant. Determinant of z I minus 

A is nothing but the characteristic equation. And that means and also this tells me that the denominator of 

G of z is going to be the determinant of z I minus A. Right? That is the basic point here.

(Refer Slide Time: 2:21)

Which means the characteristic equation of G is the same as the characteristic equation of A. It has to be. 

We have learned this in many different contexts. Now we are learning it in the context of linear systems. 

That's all. So the characteristic equation of G is the same as a characteristic equation of A. And we say the

roots of characteristic equation of G are poles and from matrix algebra theory we say the roots of 

characteristic equation are the eigenvalues. So it's just different terminology but otherwise there are one 

and the same. 

Straight away therefore we can state the stability condition as, asymptotic stability condition that any LTI 

system is asymptotically stable. Although, I don't say asymptotically here. The reason why I don't see the 

similar article here is, you know, for all practical purposes, although we say, a system can be BIBO stable 

even if it is not asymptotically stable and so on.
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When can a system be BIBO stable and not asymptotically when then unstable polls are cancelled by 

unstable zeros but that's just academic. It only happens in classrooms, on the computer screens. That's it. 

Practically you can't have such an exact cancellation. So, for all practical purposes and an unstable system

from an asymptotic viewpoint is unstable. That's it. Don't expect nice zero cancellations and then to 

construct a BIBO stable system even though it's asymptotically unstable. Even the slightest uncertainty 

error in your design of the system can lead to the, I mean, violation of the cancellation of zero and pole.

So practically we'll see any system that's asymptotically unstable, he has unstable, itself. So any LTI 

system is stable if and only if all the eigenvalues of the matrix A are strictly within the unit circle. Same 

story. You have a similar result in continuous time systems as well. Any continuous time LTI system is 

stable if and only if the eigenvalues of the continuous time state-space model are all in the left half plain. 

Same story. Okay. No that's all. So there is not much to discuss there. Once we have established a 

mapping that is still the story is the same. The second aspect as I said is to learn how to look at stage-

space models of systems which have delays. First thing to remember is we have already said every state 

equation has a built in unit delay it. Right?

So if there is a unit delay in the system then I don't have to worry whatever stage-space model I get is a 

state-space model. But if there are delays more then what your standard state-space model has for that 



system. Then you will have to introduce artificial states to accommodate those excess delays. I'll show 

you an example. All right. But before we do that from a transfer function viewpoint, if G of z is a transfer 

function of a system in D additional delays is going to cost result in a multiplicative factor of z to the 

minus N D, we know that. Right? Or q to the minus N D. 

So you should expect N D additional poles are the origin. Provided you have written G of z correctly. 

Remember we went through an example a couple of days ago where we had a transfer function which is 

second order and two delays second order from a systems perspective and two delays from the input side. 

But when you wrote it in the form of G of z, there we saw that the system turn out to be third order. Why 

did it turn out to be third order? Because there was an additional delay on top of the unit delay that you 

had and therefore it turned out to be a third order system.

So that was the question that one of the students asked yesterday after the class, know what is ordered 

here. Should I say that the system is second order or third order? And it was a very good question and the 

answer to that is there is no unique way of stating the order per say, unless you state that delay also 

together. If you're looking at it from an input-output perspective with respect to the example that we saw, 

for that example you would say that the system is second order with two input delays, input-output delay, 

which is a perfect way of describing it because the order that you're talking about is the order of the 

characteristic equation. That is off what you will write as a free response.

But when I turned to state-space representation, I would say it's the third order system. That's it. I don't 

have to mention any delay because we know that there is a unit delay built into the state-space model. I 

don't have to mention anything because the state space from standard. All I have to say is third order 

which means there are three states that are required to describe the full system. What is a full system? The

input delay plus the system. Let us let us look at an example here as to what happens here.

So we have this example. Suppose a delay of two samples is introduced in this system. So this is the 

system that we saw earlier. Right? We had this conversion but except that the coefficients of B are 

different.
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So let us take this sample second order system. Now we want to ask if the if there is an additional delay of

two samples on top of this, how do a rewrite the state-space model? See there is an additional delay. From

a layman's viewpoint all you would do is in place of u k you would have u k minus 2. That's all. But that 

is not in the standard state-space form. Right. In order to bring that to the standard state-space form we 

will have to introduce two additional delays.

Okay? Now let's look at that. Here the state equation is now given by this, but this is not in the standard 

state-space form. And therefore I have to introduce two new states u k minus 2 and u k minus 1. I mean 

corresponding to u k minus 1 and u k minus 2 I introduce two additional states which denote by a tilde 

there. Okay? 
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So here. Sorry I denote by bar, the state-space model for the delayed system now becomes this. How do I 

arrive at this? Well, I know that x1 bar k is u k minus 2. Right? So if you look at the state's equation here I

have x k plus 1 as A x k plus B u k minus 2 in place of u k minus 2, I would have x1 bar k. one basket. 

And that is why you would see in our x k plus 1 there you would see an x bar here. So you see here. B u k

minus 2. Right? x k plus 1 is a x k plus B u k minus 2 and. Sorry x1 tilde. Here earlier I said bar, I'm 

sorry. So x k plus 1 is 0.24, 0.8, A matrix remains unchanged. All right? But what you have here is a 1 for 

the first state of x tilde.

x tilde is a vector, x is a vector. x is your default vector here, that we have already. x tilde is additional 

states that you have introduced. Right? So when write the state equation here I would have x k plus 1 

equals A x k plus B x1 tilde k. And that is why you see a 1 here. Sorry. This part of the matrix remains 

unchanged. Now you have additional rows in A. Why do we have additional rows in A. Because what we 

are doing now is, we have introduced two additional states and I have to write state equation for those two

additional states as well.

Put together now, my system is described in terms of x and x tilde. And it is my responsibility to write 

state equations for each of these. So I have x k plus 1, I have x tilde k plus 1. The state equations for x k 



are already given that come straight away from the problem statement. But we want to rewrite this in 

terms of the new states that we have introduced. And as I just said, because u k minus 2 is x1 tilde k, we 

get here x k plus 1, A x k plus B x1 tilde k.

So now how do I write this. Remember, here the way you write this is, you say, well, I have B and then I 

can also say 0 because ultimately the goal is to x plus x k plus 1 in terms of not only x k but also x tilde k.

So this is x tilde k. Right? So you see how the first two rows of A have been modified. Here you have the 

0, 0.24, minus 1, 1.1 comes from you’re A. And then where does this come from, B. So, if you look at B 

it's 0.82. But then there are zeros. Remember, because you're going to have to have to zeros. So, the zero 

is a vector of zeros.

Do you understand?

Now, when you go to x tilde k plus 1, x tilde k plus 1 doesn't depend on any of the other states. It only 

they just share a shift relation and that is why if you look at x 1 tilde k the state equation for that would be

u k minus 1 which is nothing but x 2 tilde k. That's why you have one here. And finally, what would be 

the state equation for x 2 tilde? Simply u k, which means the rows of A corresponding to x 2 tilde k plus 

will be all zero and you will see a 1 in the corresponding row of B.

So all we have done is taken that u k minus 2 and absorb this into the matrix A. Why? Because I want to 

write it in a standard form. That is the central idea behind this augmentation of states methods. And now 

you straightaway see that the order has increased from 2 to 4. And accordingly you will modify the output

equation, the output equation doesn't change. Okay. Except that now you have more zeros coming into 

your C. The question that you have to ask yourself is should I always, would I always end up augmenting 

a state-space model with additional number of states like this.

Suppose in this question as a simple thought, a question to ask. Suppose I had asked a question a delay of 

one sample, an additional delay of one sample was introduced. Would you see an augmentation? So let 

me actually take you to an example in the book. 

I'll just zoom in for your convenience here. So look at this example, this is the example that we just 

discussed in the former slides. Now suppose I take some other system just to show you that augmentation 

should be done carefully, that is the number of additional states that you are to introduce, it has to be done

with caution. Right?



What kind of caution you how to exercise. Suppose you're given now this transfer function, you're not 

given the state-space model, you're given this transfer function. And now If I were to look at the state-

space model for this. This is a state-space model. Just one of these state-space forms. Nothing has been 

done. We have just been given a transfer function. And what is the order of the transfer function that we 

have been given.

It's a second order. And what is it delay? Unit delay. Correct. That we have ascertained, again when you 

look at the order you have to be careful. Here this system is indeed second order.

(Refer Slide Time: 16:35)

No support to this system and additional delays introduced. Which means now the transfer function is 

modified in this way. Because of additional delay the numerator has become q inverse square from q 

inverse. Now the question you should ask is, should they augment. If I look at the state-space form here, 

should they augment the state-space form with an additional state. What do you think? Yes or no? How 

will you figure that out?

And that's what this example is trying to tell you. How do you figure out when to augment, when to 

introduce new states when you have delays and how many to introduce? How will you figure that out?



Remember the number of states request is the order of your transfer function. Same, they're the same. 

When you write it in terms of G of z, here I am giving you in terms of q inverse of z inverse. So let's look 

at this transfer function here, without that is when you had only just a unit delay. If you were to write this 

in terms of G of z, that is not in terms of z inverse or q doesn't matter. What would it look like?

(Refer Slide Time: 18:09)

G of q would be 2 over. This 2 or 2 q? 2q over q square 1.1q plus 0.8. That's it. How many poles does the 

system have? Two. So it's a second order system. Now go to this system where you have an additional 

delay. Okay. Let's call this as G1. Although I don't have it in the text as G1 and G2. Let's call the new one 

as G2. What would be in terms of q? 2 over q square minus 1.1 q plus 0.8. Has the order of system 

changed? It is not. Still remain second order which means you don't have to augment any new states. You 

should augment new states only if the order of the transfer function has changed because that is straight 

away telling you additional states are necessary. 

So here you can still rewrite your state-space model. And I'm showing you how you can be that the state-

space model with u k minus 1 in place. You don't have to augment. What has changed here? So this is the 

state space form when there was one delay and now with two delays, what has changed? The B matrix has

changed. No new states have introduced. Whereas for the other example that we just discussed, we did 

have to augment two additional states. Suppose I accidentally did the augmentation. Okay? let's say 



blindly, because I just remembered. Whenever there is an excess delay I have to introduce a new state. 

Suppose I did that.

How will I figure out whether I made a mistake? Well, that is where the concept of minimal realization 

comes about. And there is a clear definition of what is a minimal realization state-space model and 

Kalman had given this definition long ago among many-- State-space model is set to be of minimal 

realization if it is both observable and controllable. 

We have not talked of observability yet. I've just briefly mentioned how to, I mean, at least qualitatively 

we're discussed observability but not quantitatively. Later on we will learn the definitions of observability

and controllability. What that statement means is, Kalman government is trying to say is, "If you have 

more states than necessary in your system you will not be able to infer that."

You not be able to observe them. You can have a hundred additional states but none of those states you 

will be able to infer from the measurements, because they are just extra candidates there. They were not 

supposed to be there. They have just come like you know in many Bollywood songs today it is 1:100 ratio

songs. Okay. There is a heroine, then there are 10,20, 100 and there hero, there's-- because they don't want

to be left alone. We think we are actually very, we're progressing but actually we're being very, even more

conservative than ever before.

So there you have these additional candidates. They are not? Minimal legalization is hero and heroine 

only. For the movie. So here also if in this example that I am showing you on the screen right now, you 

could augment blindly and you will find that that new state-space model is not that of minimal realization.

How will you find that out? Well in MATLAB there are ways to do that, you can construct an 

observability matrix and you can look at the rank of the observability matrix. Theory says if they 

observability matrix is rank deficient. Then you have a loss of observability. And the rank of the 

observability matrix is the order of the minimal realization.

So you can quantitatively check how many states were required and how many additional states you have 

introduced by mistake. [22:45 inaudible] not supposed to be there. So we will, as I said talk about 

observability and controllability later on. Okay, so the summary is, now when I have delays there is a 

chance that you will have to additionally augment the system with some states, whether you have to do it 

or not is best determined by writing the transfer function form and see if the order has changed for now. 

For that's the best way to do it. And it remains in fact a very good way of checking whether I need to 

augment or not. So simply convert this state-space model to a transfer function model and now in fact you



should do this for this example. Go back to this example. The slides are there on the on the course 

website. Take this example, write the transfer function form. All right. And ask, what is that delay, 

existing delay in the system? What is the order of the system? And now if I introduced two additional 

delays, does the order the transfer function increase to four. If it does increase to four then it warrants an 

augmentation of two more states.

So just do this exercise and you will be convinced. Okay. So very quickly let me talk about the state-space

verses transfer function forms and then we will wind-up. So when do we go, when do we seek state-space

forms and when do we seek transfer function forms. And we have discussed one aspect already of 

identifying state-space models, which is that typically there are more number of unknowns, then a transfer

function form for an unstructured state-space model. But as you go and impose structure, the number of 

parameters come down. Suppose I just want to identify, still at unstructured state-space form, very well 

knowing that there are more number of unknowns. Is it a recommended approach? The answer is yes. 

There are at least two or three different reasons, why I want to first of all even think of a state-space 

model. Forget about unstructured and structured. One is, when I have joined state estimation and 

identification problem, which is impossible for a transfer function model to handle.

We know very well, because the answer function model simply cannot handle hidden variables. So 

whenever I'm looking at soft sensing or joint state estimation identification problem, where the state 

estimates are also useful to me and as well as the model. Then there is no choice you have to turn to state-

space models. That is one situation. The other situation is where I just want a first-cut model for a system 

without having to break too much sweat.

You will learn later on, when you come across subspace identification methods, that unstructured state-

space models can be identified without solving an optimization problem. You can still get an optimal 

estimate of an unstructured state-space model using simple linear algebra methods rather than solving an 

optimization problem. So numerically these are more efficient and therefore if you just want some state-

space model, like for the liquid level system or whatever system that you want to have. Don't worry 

about, no number of unknowns and so on. If you have enough data points you're fine. Then the 

unstructured state-space model is a natural choice because of the algorithms that are available for 

estimate.

The third reason why we want to look at stage-space models are multi variable systems. Okay.
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So for multi variable systems, that is multi-input, multi-output systems. If I have let's say, a four by four, 

four input-four output system. I would be looking at identifying 16 transfer functions. Then I have to 

break my head on figuring out what is a delay, what is the order of each of those. It becomes a mess. 

Whereas I still identify a single state-space model [26:43 inaudible] when it comes to multi variable and 

single C so system, doesn't matter. All of them work with the same single state-space model, the 

dimensions of the matrixes may change but you don't have to seek a new algorithm, you don't have to 

break additional sweat. It is only the computational burden may increase. That's it, you may need more 

data points, but otherwise you don't have to keep figuring out what is the order of the individual 

subsystem and so on. So these are the three top reasons why you want to look at state-space models 

despite some demerits with them. All right. So just remember that. Let me just, these are just a summary 

of what we have discussed.
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These are the MATLAB commands that will come handy particularly when you solve assignments and 

not for the quiz. So for example state-space objects, there is a similar set of MATLAB comments that are 

available for the input-output models. Please look up the course notes in the interest of time.

I'm not going to talk about that today but at some other point I'll bring up those. So here you have SS 

there you have the TF. And you can incorporate delays in input-output models by using this IO delay 

property. Every object, LTI object that you create in MATLAB has certain properties. You have to 

remember that. In fact you can examine those properties using get command. Right? Suppose G D is the 

transfer function object or state-space object. You can say get G D, list all the properties. And some of 

these properties will include IO delay, input delay, output delay, sampling interval and so on.

And if you want to retrieve the stage space matrixes from a state-space model you can use SS data and 

then you have the standard SS TF, TF to SS. SS to TF expects you to give A B C D and TF to SS expects 

you to give numerator and denominator but TF and SS is what I prefer more because all you have to do is 

pass on the state-space object to TF, it will give you a state-space model and likewise for SS. You can do 

the analysis using eig or pole, 0 pzmap, dcgain. I have shown you this already, bode also have shown. 

And of course I've shown you LTI view. dlsim is a nice command for simulating LTI systems to arbitrary 

inputs. Your custom user defined inputs. Impulse, step will give you the standard impluse and step 

responses, initial gives you the response to non-zero initial conditions. Particularly useful for state-space, 



simulating state-space models. So these are the relevant MATLAB commands and that's it. So we really 

see you.


