
Until last class we have looked at models for linear time invariant system, in
particular  deterministic  systems.   And  we  have  learned  that  there  exist
different forms of representation and we have done that by starting with the
convolution form, which is kind of a natural model for an LTI system.  And
then we moved on to other models.  So here is your LTI system.  One of the
fundamental models is the convolution model or convolution equation, right.
So this is one model of the LTI system and from the convolution model, we
could  look  at  three  different  responses…  models.   One  is  the  impulse
response model, so I am just summarizing things for you, so that you can put
all this concept in a good perspective and then you have the step response
description.   And  on  the  other  hand  you  have  the  frequency  response
description, right.  I have segregated the impulse and step on one side and
the  frequency  on  other  side,  for  reasons  you  must  have  guessed,  the
frequency response is described in the frequency domain, right.  So this we
call  as  the  non  parametric  models.   And  then  we  said,  look  from  an
identification view point there must be something that we have to do in order
to reduce the number of unknowns.  And one of the things that we did was,
we  went  further  and  wrote  the  FIR  model,  assuming  that  the  system is
stable, right.  And that was one… that’s the set of approximate models if the
system is infinite impulse response.  If the system is truly FIR, then it's not an
approximation.   And on  the  frequency  response  side  also  we studied  an
approximate model, and what was that?  The ETF, right the empirical transfer
function.  So here we came to the empirical transfer function, where… where
we define empirical transfer function as the ratio of the DFTs of the output
ring.   So this  is  theory,  these are all  theoretical  definitions that we went
through and then we said, if I have to practice this theory, then one of the
parts that I have to take is FIR model.  If I have to implement this theory in
practice, then this is one that I have to… that I can define.  This is not the
only approximation, you can come up with your own approximations.  Even
in these kinds of descriptions, you may have a large number of unknowns to
estimate or even if you go back to the original impulse response model, if the
system  is  infinite  impulse  response,  then  there  are  infinite  number  of
unknowns.  To overcome that and keeping in mind the estimation principle,
which is that keep the number of unknowns to a minimum, we resorted to
parameterization  and  that  parameterization  gives  birth  to  difference
equation  forms,  right.   So  the  root  that  connects  this  convolution  to
difference equation form is parameterization.  So if you have to write along
this, say parameterize.  And from this difference equation form, we define
the transfer function operator, so we had the TF operator form, right, and
then we had the TF, the transfer function itself, which is in the Z domain, so
this is the shift… in terms of the shift operator, but the transfer function is in
the form of… in the… defined in the Z domain.  In fact the special case of
this is your FRF, I could have written, let me do it the other way so that we
keep all the time domain on the right hand side and frequency domain on
the left hand side.  So this is in terms of Q inverse and here we have the
transfer function, which is in the Z domain and we know that these two are



connected, right.  In fact not this, but these two are connected, frequency
response and Z domain, the transfer function by working only on the unit
circle in the Z domain, if it exist, we know that frequency response function
exists only for stable systems.  What else is missing here?  The mighty state
space description, right.  So that is missing.  So here you have the state
space description, which relies on a completely different concept or notion of
a state, that is kind of fictitious, some time snot fictitious, but the general
understanding is that the states are not necessarily observed, whereas the
measurements,  the  outputs  are  always  observed,  so  we  have  therefore
another description, and within this you have the non parametric state space
models, which we call as unstructured state space models and then you have
structured state space models, right.  If you were to go from a difference
equation  form  to  a  state  space  form,  there  are  infinite  pathways,  right.
There are infinite models that you can get, but the fact is, if you go from a
difference equation form to a state space form, you will necessarily end-up
with some structured state space form, alright.  Whereas in identification,
you have the privilege of directly fitting a state space model, in which case
you may know the structure, you may not know the structure, and as you will
learn later on, state space models, initially its best to identify them without a
structure,  unless  there  is  a  compelling  reason,  not  to  pursue  the  truth.
Because  the  algorithm  for  identifying  so  called  unstructured  or  fully
parameterized or freely parameterized state space models are very easy to
implement, whereas the algorithms for estimating a structured state space
models requires you to solve an optimization problem, a constrained kind of
optimization problem.  And we know that all of this now, I can go from state
space  models  to  these  forms  as  well,  they  are  all  connected,  its…  its
bidirectional.   There  is  no  uni-direction  here.   Coming  from  frequency
response  to  transfer  function,  also  is  possible,  provided  you  know  the
structure, so here also you can come, you can arrive at the transfer function
representation  or  the  difference  equation  form,  provided  you  know  the
parameterization.  In fact there are certain fields of research or there are
certain applications where people are interested in arriving at the transfer
function form, starting with the frequency response form.  And what they
would describe is, I have a frequency response description, I would like to
arrive at a complex frequency description.  So you perform your experiments
on the pure frequency, that is sinusoids and cosines remember, the transfer
function  tells  you  how  the  system  responds  to  complex  frequencies.
Damped E to the J omega times E to… E to the J omega K times E to the
sigma K, right.  So they are called complex frequencies.  How to arrive at this
from  the  frequency  response,  that  involves  some  assumption  on  the
parameterization, on the… some structure.  So the story is same here, you
can say more or less there is some parameterization involved here as well in
arriving at the transfer function.  So they are all bidirection and… and the
question is now which of these models, right.  And not only now, but always,
which model structure and as we have discussed many a times, it depends
on the end use, the Es of estimation what you are looking for and so on.  And



that  we will  learn  as  we go along.   So this  is  what  we have learn,  in  a
nutshell, what we have learnt until now.  We have gone through the math
and so on and I have also drawn your attention to the MATLAB commands.
What I have not discussed are the MATLAB commands for the input output
description.  So at the top all this corresponds to input output descriptions.
(Refer  Slide  Time:  11:00)



And you have this, some of this you must have already known in the process
of solving your assignment.  So you have TF that allows you to describe a
transfer function object or  a difference equation object.  Then you have ZPK.
ZPK  stands  for  Zero  Pole  K.   you  can  rewrite  your  transfer  function  by
factorizing the numerator into zeros and poles and then there is a constant
factor that falls out, that constant factor is called K, right.  Don’t think K is
the  gain,  gain  is  different.   And  you  can  also  include  delays  in  transfer
function models.  Remember these commands here are applicable to both
continuous time and discrete time.  Many a times you may have to introduce
delays in the continuous time model and you can use this IO delay property.
All these objects are essentially structured objects in MATLAB and I hope you
are all familiar with structures in MATLAB.  The structures have fields, which
you access using the dot operator.  How do I know what fields are there in
each of this, as I said in the last class, you use the get, right.  If you use the
get command, it will fetch you.
(Refer Slide Time: 12:18)



So let's pick a transfer function here.  Let's say I pick this state space model,
right, okay, now let me pick this transfer function.  So this is my GD.  And if I
do a GET of GD, it gives me all this properties for that object, right.  And you
see that there is a numerator which is a vector, in fact it's an array.  The
reason  its  enclosed in  curly  braces  is  so  that  if  you  have multiple  input
multiple output system, then you would pass vectors of coefficients for the
corresponding input output channel, right now we are looking at the seesaw
system.  So you have only one entry in that salary.  And then likewise for
denominator, it tells you in which variable, what is the input output delay, it
distinguishes between IVO delay and input  delay and output  delay,  for  a
seesaw system it really does not matter, because you can always transfer
the delay from the input side to the output side, that is  there is  nothing
wrong mathematically in doing so.
(Refer Slide Time: 13:31)



Whereas  for  mimo systems,  input  delays  you  cannot  delays,  you  cannot
really  transfer  just  to  the  output,  just  like  that,  because you will  have a
multiple  input  multiple  output  system.   Each  delay  corresponds  to  that
particular channel.  If there is a delay in input channel that is specific to that
channel,  you cannot move it  around just like that, you can, but then you
have to follow certain rules.  So instead of doing that, if you know that there
is a delay in input channel, you specify that in the input delay.  If you know
there is a delay in output channel, it could be due to measurement delay.
Why do you have delays in the inputs? May be transportation lacks, they say.
That is from the time you… point that you inject to the input or the time that
you inject the input, to the time the process is excited, that is the input delay.
Likewise  you  can  have  measurement  delays  or  other  reasons  for  output
delay, you can specify sampling interval of course, and then there are, you
can give names to the inputs and outputs, you can group them, and then
some user data, right.  Where you can store some information that is useful
to you, and there are certain other fields that are of interest, not for us at the
moment.
(Refer Slide Time: 14:50)



So just to tell you know, basically the get routine gets you all the properties
associated with an LTI object in MATLAB.  You can also use TF data to get the
numerator and denominator, instead of using get, but get is more powerful,
because it gets you all the properties.  Likewise you have ZPK data, which
gets you the poles, zeros, and K, given a ZPK data object.  And as far as
analysis is concerned, you have pole, then zero, and then PZ map, which
gives you the pole and zeros and PZ map draws the poles and zeros for you,
depending  on  whether  it’s  a  continuous  time  system or  a  discrete  time
system, it will generate the particular plot.  You know DC gain already, bode
we have looked at, dlsim or lsim, you can use both, used for simulating the
systems with arbitrary inputs, that is user defined inputs.  And you know
impulse and step routines.  Any questions on this?
(Refer Slide Time: 15:58)



Okay  so  now  speaking  of  MATLAB  commands,  dealing  with  state  space
objects, as I told you in the last class, SS allows you to create a state space
object,  continuous  or  discrete  time,  delay  SS  which  is  quite  useful  in
incorporating delays into your model.  You can go and look up the help on
delay  SS,  it  tells  you the  syntax through which  you can create,  you can
incorporate delays into the state space model, and an example is given for
you, you should follow that example and apply it to the example that we had
discussed in the class.  If you recall, when we discussed state space models,
we learned how to go from a state space model with a delay to a standard
state space model, by augmenting the states, correct.  Let us that you want
to verify that in MATLAB, first you have to create a state space model with
the delay, that is without augmenting, just specify the delays in the syntax
that MATLAB expects and that is where you use the delay SS routine.  SS
routine  generally  gives  you  the,  allows  you  to  generate  the  state  space
object, but delay SS is the one that you want to use when you want to verify
that example.  Then now you want to actually figure out, what is the… that is
you want  to  arrive  at  the  standard state space form by augmenting the
states and so on and that’s where you can use the absorb delay routine,
which absorbs the delays and comes up with the state space model in a
standard form.  If there was a need to increase the number of states it will do



so and gives you… and it  will  give you the new state space model.   You
should try this out and you can even do this using delay to Z, but that’s an
old one, absorbed delay is the one that is shift with the more recent versions
of MATLAB, so you should stick with absorb delay.  SS data as usual gets you
the state space objects.  SS to TF to SS and so on, you know that it allow you
to switch  between state space and transfer  functions.   You can also you
simply  SS  on  a  transfer  function  object,  it  will  give  you  the  state  space
representation, like wise TF.  Sometimes I prefer that.  And then you have the
standard eig, pole, zero, pzmap, dcgain, bode, and so on.  LTi view, as I have
shown you in one of the classes, is a general LTI viewer for handling any LTI
system,  analyzing  any  LTI  system,  where  you  can  generate  impulse
response, step response, bode plot, nyquist plot and so on.
(Refer Slide Time: 18:40)

So these are the related MATLAB commands that are relevant to us at this
moment.  Gradually as we learn more, we will learn the associated MATLAB
commands as well.  So now we come to the main stay of today's class, which
is turning… which is that of discretization and sampling.  So until now, as I
have described on the board earlier, we have been looking at discrete time
LTI systems and the reason was of course to know what models are available
and I can choose that model when I am fitting some model to a given input



output data.  But now we will go one step deeper and recognize that this
input output data, if you recall the diagram that we had, this is the actual
story most of the times, that the discrete time process that I am looking at is
not necessarily naturally discrete time.  Do you understand what is meant by
naturally discrete time process?  What is the difference between a naturally
discrete  time  process  and  a  discretized  process.   So  can  you  give  an
example… okay anything else… our salaries, our stipends, very sadly are
discrete time, right population is fortunately discrete time, okay.  Popul... that
is growth of people.  So those are all naturally discrete time processes.  They
are not a result of any discretizing continuous time process, that is as you
said,  it  is  the discretized process is  born by observing a continuous time
process at some specific instants, it could be regular, it could be irregular, we
don’t really worry about that.  But what that means is, there is an associated
continuous time process.  And typically that is a situation that we will run
into, at least in the last class of identification problems, that doesn’t rule out
the naturally discrete time processes, whatever, theory we are learning, we
will learn, applies to any discrete time process, but by enlarge, we may end
up  dealing  with  discretized  processes,  which  are  a  result  of  sampling  a
continuous time process, like the one, and a general ischemia tic is shown for
you on the slide.  So the process here refers to a continuous time process.
You are familiar with the schematic we have discussed this in early lectures
of this course and then you have the actuator on the..  on the input site,
which  realizes  the  physical  signal  given  the  continuous  time  signal,  so
actuator  is  also  working in  continuous  time.   Then you have the D to  A
convert preceding the actuator, which connects the user to the continuous
time.  So the user designs a discrete time signal, as you know input design is
a big… is a big topic in itself.  So let us say the user has designed an input,
typically the user design in discrete time, tells the system, digital system,
that  at  these instance,  these moves have to be made.   And the D to  A
converter constructs an approximate continuous time signal, which is then
realized  by  the  actuator  in  the  form of  a  physical  signal  that  eventually
excites the process and the process now responds in continuous time, which
we then sense and sample and quantize.  So there… there is a lot of things
happening  there,  there  is  sensing,  there  is  sampling,  and  then  there  is
quantization, and then that gets recorded in the form of a measured output,
right.  What I am not showing you of course here are the disturbances and
sensor noise, but we will not worry about those at the moment.  The point of
interest for… the… for us right now is what is a connection between this
discrete time model that we have learned, ignoring all these elements?  We
just drew a block around this and we call that as a discrete time system,
wrote down all  the models, what is the connection between any of these
models, discrete time models and a model for the continuous time process?
Why do we want to know this connection?
(Refer Slide Time: 23:25)



That is why we… why do we want to know how the GD said for example, if I
am looking  a  transfer  function,  how  this  is  connected  to  let  us  say  the
transfer function of the LTI process in continuous time.  Why am I interested
in this map?  If you don’t like the transfer function language, you have ODE
CI, this is your continuous time process and this is the discrete time process
and you have DE CI, what is the map?
(Refer Slide Time: 24:06)



ODE  stands  for  ordinary  differential  equation,  DE  stands  for  difference
equation.  Why do I care, why should I know, any good reason?  Okay, so can
I just live with the transfer function, discrete time, GD, G of Z or discrete time
state space model or difference equation form and keep going, keep moving
on in life?

(inaudible)

There  is  nothing  sense  of  closedness,  there  is  a  discrete  time,  there  is
continuous time.  What do you mean by closednesss?  Any other reason, why
we want to study this mapping?  I should not just say, alright this is the part
of your syllabus, therefore you should.  You should be clear in your mind.
Can you think of one good reason, that it can help you with, in identification?
Suppose  I  tell  you  what  the  connection  is  between  the  continuous  time
process and this discretized process, how are you going to use it, how are
you going to use that theory?

(inaudible)



Okay… okay but that discrete time model can also give you, right.  It you will
give you a sampling intents, not continuous time.

(Inaudible)

So what will you do with that, will you just, you know, share it on Whatsapp
and say look I have great piece of information, let's celebrate.

(inaudible)

Okay, but  how… I don’t  know,  I  am not sure if  that  information you can
gather or, not enough clarity in that answer.  What about you?

(inaudible)

Control, no let's not get into control, but that connection is a bit farfetched.
Any other ideas?  First of all do you understand what is this map that we are
going to develop, when we say that we are going to establish a connection
between the continuous time process and the discretized one, what is the
image… what is the imagination that you have in your mind, am I going to
give you some mathematical formula between G of S and G of Z, is that what
you  are  expecting,  or  you  are  expecting  something  else.   One  standard
answer  you  could  have  straightaway  given  is,  given  the  discrete  time
transfer function if my objective is to find out, if my ultimate objective is to
find out  what  the  continuous  time process  is,  this  mapping  will  help  me
recover that, obviously.  You could have straightaway given that answer.  I
am surprised you have not given me that answer.  We have been, in fact I
said  this  in  one  of  the  early  lectures,  that  in  many  applications,  it  is  a
continuous time model that the user is seeking, not necessarily the discrete
time model,  that’s  only  an intermediary.   So if  I  want  a  continuous time
model from the identified discrete time model, I need to know the mapping,
right.  So that I can go back, of course you still have to answer the question,
whether the mapping is unique, that still remains to be answered, but that’s
okay.  At least in the first place, I need to know the mapping.  Then I can at
least recover the continuous time model, but I would be doing that in an
indirect way, because I  would be identifying the discrete time model and
then using the inverse map to find out the GC, that is the continuous time or
G  of  S.   In  fact  a  lot  of  algorithms  rely  on  this  mapping,  whether  they
indirectly identify, crude methods will involve indirect identification, that is
you identify the discrete time model first, discretized model first, and then
use  the  mapping  the  figure  out  what  is  the  continuous  time  model.
Advanced  and  good  methods  for  continuous  time  identification,  use  this
mapping as a part of the optimization, as a part of the estimation algorithm
and you should really refer to this literature because of late we have been
also looking at, begun to look at continuous time identification and it turns
out there is a lot of literature and you will find that there are some excellent



results and algorithms that are available for continuous time identification
that  can  overcome  some  of  the  limitations  that  discrete  time  model
identification algorithms have.  We will not discuss those algorithms, we will
not, we may mention those limitations, but we will not mention… we will not
discuss those algorithms, because as I said, that is not really run of the mill
as of now, but 10 years down the line, if you come back and if you happen to
see whether  students  are facing the  same difficulty  as  you are  currently
facing and you just want to sit in the class, I may be teaching continuous
time identification.  Okay you just want to see, if I have become more kind,
so you see that I will be teaching continuous time identification.  So all of this
rest  on  this  mapping,  that  is  the  first  reason.   Second a  very  important
reason, why we should study this map is because I would like to know, partly
the answer was given, whether I have loss of information or I have preserved
the information.  How could I lose information?  What is the operation in this
blog  diagram  that  you  see,  which  can  result  in  the  loss  of  operation?
Sampling, correct.  But you have to elaborate a bit more.  You have jus said
sampling can result in loss of information.  Can you give an example.

(Inaudible)

Sorry if the…

(inaudible)

Sampling rate, you mean, okay so roughly now… so when you say dynamics
of the continuous time process, you are… So you see now you are relating,
right.   So  there  is  a  sampling  rate  and  your  sampling  rate  has  to  be
commensurate with the dynamics of the continuous time process.  What is
commensurate, we will  understand shortly,  but qualitatively we know, if  I
observe  a  very  fast  process  in  a  slow  fashion,  I  am  going  to  lose  out
information, right.  If there is a rat that’s moving around and I observe it
every half an hour, I will miss out all the dynamics easily.  In fact you saw this
rat here, half an hour later it may be in other part of the city, it just moves so
fast.  Whereas, sorry… whereas if you are looking at a snail, the movement
of a snail, then it's okay, you are not going to miss much, right, you can go
have a shower come back, have your breakfast, it could have moved a few
inches.  That’s why we say at a snail's pace, right.  What this tells us is, the
sampling rate has to be commensurate with the dynamics.  Now I would like
to  establish  a  quantitative  relationship  between  the  dynamics  of  the
continuous time process and the sampling rate.  And make sure that I am
choosing  some  health  sampling  rates,  because  we  can  keep  saying
qualitatively, if this is, if the process is fast observe more frequently, if the
process is slow, observe less frequently, that’s our qualitative rules, but we
want some quantitative relationships and that is what this mapping will also
help us, right.  At least in two different ways we will find this mapping useful,
one in recovering the continuous time process, which may or may not be of



interest in this course, predominantly it isn't, but occasionally if we want to
talk  about  the continuous time process,  we may explore and exploit  this
mapping, but more importantly choosing an appropriate sampling rate.  If I
give you an experimental setup and I say okay, go ahead and perform an
experiment for identification, you have to make some important decisions
and one of that decision is sampling rate, for that you need to know the
mathematical relation between the sampling rate and the dynamics of the
process.  So at least these are the two top reasons, why this mapping is
going to be used.  Now in studying this mapping, we shall ignore the actuator
dynamics,  that is  first  point  that I  want to make, we will  also ignore the
sensor  dynamics,  that  is  not  going  to  cause  a  major  problem  for  you,
because if  there  are  those dynamics,  you can always  club  that  with  the
process and redo your exercise, so it's not going to really take away much by
assuming or neglecting the actuator sensor dynamics, clear, and we will also
ignore the quantization effects for now, quantization can also bring in some
effects, remember, quantization is an irrecoverable kind of operation,  you
know what quantization is, right, take a continuous time signal, chop it off,
and I say bin them into some levels, we will ignore those effects.  We will
simply now focus on the continuous time process and the sample and hold
operation, that means, we will only look at this A to D converter as a sampler
and  we  will  look  at  this  D  to  A  convert  as  some kind of  a  hold  device,
neglecting the actuator and sensor dynamics and ask how the continuous
time process maps on to the discretized process.  Now all of this should not
sound as very novel and alien to you, because discretizing continuous time
equation,  differential  equations  has  been  something  that  you  have  been
doing all and all.  You have done it in your first year, may be even in your
senior, you know, high school, you must have done it, where I give you a
continuous  time  OD…  I  give  you  an  OD,  and  I  ask  you  to  numerically
integrate it.   When you cannot do the analytical  integration,  how do you
perform  the  numerical  integration  by  writing  an  approximate  discretized
formula, either using Euler's backward rule, forward rule, whatever, there are
number of ways in which you can discretize.  So you can think of this as
another discretization method that is relevant to sampler and hold, that is
now  you  are  given  that  there  is  a  sampler,  there  is  a  hold,  in  those
discretizations, all you know is that I have to come up with an approximate
discretized form, and you chose your method.  But here the setup is different
and therefore you want to stud this discretization in a different way, okay.  So
remember again that we are looking at discretized systems, whereas you can
have discrete time systems by themselves, which can even occur naturally.
(Refer Slide Time: 36:14).




