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Example: (Refer Slide Time: 00:13)

We will discuss now very nice example from Fox and McDonald. We will clearly understand

the use of the substantial derivative and then the Eulerian frame of references, Lagrangian

frame of reference etcetera. Let us read the example (Above reference slide). Consider

two-dimensional steady incompressible flow, two dimensional because you have velocity

variation in the x-direction and in the y-direction as well, steady as we have seen earlier at a

particular point there is no change in velocity.

The incompressible flow we will discuss later. As of now, you can just say it is something

like constant density flow; through the plane converging channel. Why is it a plane? The

configuration is such that you have two planes like this, usually, a nozzle has a cylindrical

geometry, but that will take us to a cylindrical coordinate system, there again, of course, is an

increase in velocity acceleration takes place, but to make life simple and consider a simple

geometry, we are considering two planes converging to each other. That is why it says plane

converging channel shown.



The velocity on the horizontal central line is given by the velocity field, . So𝑣 = 𝑣
1

1 + 𝑥
𝐿( )𝑖

far, we are been telling a velocity field, the first time coming across an expression for a

velocity field. Now, we know that this v vector has three components vx, vy, and then vz. In

this particular case, we have only the x component, because the vector here is i vector.

Now, why does it say on the horizontal central line, the reason is that if you are away from

here there are there is a y component also. So, only along this central line, there is the only x

component of velocity. Once again, to start with the simple example we are considering along

the central line, if not along the central line I should consider both v x and v y.

So, that is why the example is so well simplified, but same time gives you all the concepts.

What is that you are asked to find out? Find an expression for the acceleration of a fluid

particle moving along the central line. We have a particle at the inlet and it moves along the

central line, what is the rate of change of velocity as experienced by the fluid particle. Then,

we are asked to evaluate the acceleration and the fluid particle is at the beginning and at the

end of the channel.

(Refer Slide Time: 03:31)

Solution:

We will use two approaches to solve for the acceleration of the fluid particle. First is the

Eulerian approach and then using a Lagrangian approach. We will clearly see what is the

difference between these two approaches, what is the independent variable etcetera. That



dependent variable is of course, acceleration ok. Now, a substantial derivative of velocity

gives an acceleration of a fluid particle in terms of Eulerian field variables. We have seen

that; we are going to illustrate that in this example.

The substantial derivative of velocity which is from the Lagrangian viewpoint that gives the

acceleration of the fluid particle, we are asked to find out this in terms of Eulerian field

variables. We require a velocity field to find acceleration and that is what is given to us. We

are going to use the velocity field to get the acceleration of the fluid particle.

So, the acceleration in the x-direction of the particle.
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Either you can write as or ; ax represents an acceleration in the𝑎
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𝑝
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x-direction of the particle as a function of x, y, z, and t. These are all Eulerian special

locations which are very familiar every time and of course, represented as ;
𝐷𝑣

𝑥

𝐷𝑡

In this case, it is a steady-state. So,

∂𝑣
𝑥

∂𝑡 = 0

We will have only the convective component. Even in the convective component, because we

are along the x-axis, there is no y component of velocity. Of course, we are considering only

the two-dimensional case. So, there is no z component of velocity, which is something

perpendicular to the plane of the slide ok. So, there is no z component and since we are along

the x-axis there is no y component. Otherwise, you would have y component as well ok. So

𝑣
𝑦

= 0;         𝑣
𝑧

= 0

All these are taken so, that you get a very simple expression so, there understand and focus

more on the physics and whatever concepts illustrated by the example.

So, now, our expression becomes simplified
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We are given the velocity field, the x component of velocity as a function of x. Let us see

what does this mean, how does this velocity intuitively represent the flow.

𝑣 = 𝑣
1

1 + 𝑥
𝐿( )𝑖

Let us say x = 0; the velocity is v1. What does that mean, the velocity in terms of Eulerian

representation the velocity at inlet position is v1. Now, let us say if you take a channel of

length L and substitute x = L, the velocity here is 2v1. The velocity field of course, gives you

the velocity at any x along the horizontal axis. That is the interpretation for this velocity field.

And it is a steady flow as we have been discussing and so,

𝑎
𝑥

𝑝

𝑥, 𝑡( ) =
𝐷𝑣

𝑥

𝐷𝑡 = 𝑣
𝑥

∂𝑣
𝑥

∂𝑥

Then you substitute for this velocity field vx here and then differentiate that partially with

respect to x.

𝑎
𝑥

𝑝

𝑥, 𝑡( ) =
𝐷𝑣

𝑥

𝐷𝑡 = 𝑣
1

1 + 𝑥
𝐿( )𝑣

1
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𝐿 =
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1
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𝐿 1 + 𝑥
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In this particular case, you can write as , because there is no y variations, z variation,
𝐷𝑣

𝑥

𝐷𝑥

times also not there, but generally we write as .𝑣
𝑥

∂𝑣
𝑥

∂𝑥
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Now, the acceleration of this particle is

𝑎
𝑥

𝑝

𝑥( ) =
𝑣

1
2

𝐿 1 + 𝑥
𝐿( ) 

Let us say if we want to tell in words, acceleration of any particle ok, that is at a point x at a

particular instant you have a particle here and what is its accelerations, acceleration of any

particle; remember we said substance derivative relates Lagrangian representation in terms of

Eulerian location that is what it exactly is shown here. Acceleration of any fluid particle that

is at a point x, x is something like our special location at an instance is given by this

expression.

So, if you substitute x; different values of x, you will get the acceleration of a fluid particle as

a function of axial position. Particle experiences acceleration even though the flow is steady.

What do you mean by steady flow? At a particular position, there is no variation of velocity

with respect to time. So, it is a steady-state flow, but because the velocity increases along the

direction of the flow, the fluid particle experiences an acceleration along the direction of the

flow. So, the particle experiences acceleration even though the flow is steady. Usually, we

associate acceleration with some rate of change with respect to time, but in this case, when

we say acceleration, you travel along with the fluid particle, you experience a change in

velocity as you travel resulting in an acceleration ok.

Now, the acceleration of a particle as a function of special location which is x coordinate is

given by,

𝑎
𝑥

𝑝

𝑥( ) =
𝑣

1
2

𝐿 1 + 𝑥
𝐿( )

We want to find out as the question says find out the acceleration at the beginning, at the end.

This means we have to just substitute x = 0, and x = L and that is what we will do now. So,

when the particle is at the beginning of the channel x = 0 so,

𝑎
𝑥

𝑝

𝑥 = 0( ) =
𝑣

1
2

𝐿 1 + 0
𝐿( ) =

𝑣
1
2

𝐿

This is the acceleration at the beginning of the channel. Now when the particle is at the end of

the channel, x = L and we get the expression for the acceleration of the particle at the end of

the channel;



𝑎
𝑥

𝑝

𝑥 = 𝐿( ) =
𝑣

1
2

𝐿 1 + 𝐿
𝐿( ) = 2

𝑣
1
2

𝐿

This is twice the acceleration at the beginning of the channel.

So, in this particular case, not alone the velocity increase along the channel, but the

acceleration also increases along the channel. So, acceleration is also twice of that at the

beginning of the channel.

What we had done now? We have followed an Eulerian approach. Why the Eulerian

approach? We use the field information; velocity field information; we were nice meaning for

substance derivative. The whole thing is achieved because of the significance of substance

derivative, just substituted in that, got the acceleration of the fluid particle. Now what we will

do is, get the same expression following a Lagrangian approach. Why are we doing that? So,

that we understand what do we mean by the Lagrangian approach, what do we mean by the

Eulerian approach.

Now, in the Lagrangian approach, what is required is the position of the particle as it flows

through this converging nozzle. So, if you are experimentally measuring, then you will have

the portion as the function of time, but in this case because in the example we do not have

that information. So, what we will do we will use the velocity field itself to get the position as

a function of time.
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Let us do that. So, what we are going to do is, arrive at the same expression at the beginning

and end of the channel for an acceleration of the fluid particle, but following a Lagrangian

approach.

So, obtain motion of the fluid particle as in particle mechanics; exactly what you do in

particle mechanics for a single particle, we do that here for a fluid particle. To emphasize that

I put that is the first statement, obtain motion of the fluid particle as in particle mechanics.

Remember we said, Lagrangian is a natural way because it all carries over from particle

mechanics ok. We are going to use that approach. Now, because we said particle mechanics;

we know that the velocity of the particle can be obtained by differentiating the position of the

particle, simple differentiation.

𝑣
𝑥

𝑝

𝑡( ) =
𝑑𝑥

𝑝
𝑡( )

𝑑𝑡

Then we can get the acceleration of the particle by differentiating the velocity of the particle

ok. All these are exactly what you would have discussed in your physics class for a solid

particle, you are now extending to a fluid particle.

Now, how to get the position of the particle ok. As I told you sometime back if it were

experiments, we would follow the fluid particle, now its portion as a function of time. Being

an example here we will use the Eulerian velocity field itself to get the position of the particle

as a function of time. What do I mean by that? You start here t = 0, you specify some time I

want to know what is the position of the particle? What is the position of the particle given a

particular time? How to get the position of the particle is a question ok?

Now, we have used this during the derivation of the expression for substance derivative, we

will use the same physical principle. At any instant of time

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =  𝐿𝑜𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑓𝑖𝑒𝑙𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑥
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑡( ),  𝑦
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑡( ),  𝑧

This does not mean that the Eulerian velocity is equal to Lagrangian velocity. What it means

is two ways of understanding this expression. You have a flow field and then you are at a

particular location. The velocity at that particular location is equal to the velocity of the fluid

particle which happens to be at that particular location that particular instant. After all fluid

particle represents the flow. So, both velocities should be the same. I will repeat again you

have the particular location, the velocity of the fluid which is Eulerian description should be



equal to the velocity of the fluid particle, which happens to be at that particular location at

that particular instant.

I will just repeat the statement, but in the reverse direction; looking at the particle point of

view we are tracking the fluid particle. It is at a particular location its velocity is the same as

the velocity of the fluid at that particular location. The velocity of the particle in the

x-direction is equal to the Eulerian velocity but replacing x by xp position of the particle.

𝑣
𝑥

𝑝

𝑡( ) = 𝑣
𝑥
(𝑥 − 𝑥

𝑝
)

Now, we know that this velocity of the particle is nothing, but the derivative of the position.

So, instead of this velocity of the particle, I replaced it with the derivative of the position of

the particle.

𝑑𝑥
𝑝

𝑑𝑡 = 𝑣
1

1 + 𝑥
𝐿( )

𝑥=𝑥
𝑝

= 𝑣
1

1 +
𝑥

𝑝

𝐿( )
On the right-hand side, we know that this is the Eulerian velocity, but now it is at a particular

location where the particle is present. So, I replace here x by xp. So, same expression instead

of x, I replace xp divided by L. What does this equation tell you? This will tell you what is the

rate of change of the position of the particle in terms of x direction. How is it related to the

Eulerian field replacing x with xp. So, we have got a differential equation for the position of

the particle.
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So, the rate of change of position of the particle is

𝑑𝑥
𝑝

𝑑𝑡 = 𝑣
1

1 +
𝑥

𝑝

𝐿( )
So, it is a first-order differential equation, xp is the dependent variable, time is the

independent variable. We need one initial condition for this. So, we will say at time t = 0, the

particle is at the beginning of the channel. So, I integrate this equation, do a variable

separation.

0

𝑥
𝑝

∫
𝑑𝑥

𝑝

1+
𝑥

𝑝

𝐿

=
0

𝑡

∫ 𝑣
𝑡
𝑑𝑡

What are the limits at time t = 0, the particle is at x = 0. In this case, x p = 0, and then at any

time t the particle is at any position xp. It’s a differential equation that is integrating given the

condition. And doing simple variable separation, integrate this

𝐿𝑙𝑛 1 +
𝑥

𝑝

𝐿( ) = 𝑣
𝑡
𝑡

Our objective was to get the position of the particle as a function of time. So, rearrange this

equation so, that you get an expression for the position of the particle as a function of time.

𝑥
𝑝

= 𝐿(𝑒
 

𝑣
1
𝑡

𝐿 − 1)

What does that time mean? As I told you the particle starts here, you would start your time,

and then it travels along the channel and time starts taking away and this gives you at any

time instant whereas a particle.

Of course, now once you have got the expression for the position of the particle, as I told you

sometime back; in this case, we have got it from the velocity field. If it were an experiment

let us say we discussed the particle image allow symmetry you would get this in experimental

data. Once you have got the position of the particle, then the simple differentiation will give

you a velocity, one more differentiation will give you the acceleration, that is what exactly we

are doing. That is why this exactly the same as particle mechanics applied for a fluid particle.

Now, the velocity of the fluid particle is



𝑣
𝑥

𝑝

𝑡( ) =
𝑑𝑥

𝑝
𝑡( )

𝑑𝑡 = 𝑣
1
𝑒

𝑣
1
𝑡

𝐿

So, you get this velocity, and then an acceleration of the particle is once again you

differentiate the velocity, you will get the acceleration of the particle.

𝑎
𝑥

𝑝

𝑡( ) =
𝑑𝑣

𝑥
𝑝

𝑡( )

𝑑𝑡 =
𝑣

1
2

𝐿 𝑒
𝑣

1
𝑡

𝐿

What is to be noted here is that the velocity is in fact, the position, velocity, acceleration are

all functions of time. Remember Lagrangian description, what are the independent variables?

Initial position vector, initial position, and time. In this case, initial and then we say

Lagrangian independent variables are for particular fluid particles. What is the particle a

remember; in our chimney example we said particle A, particle B, particle C. Two

independent variables, one is initial position and then time. In this case, because you are

focusing on one particular particle, that initial position does not appear but indirectly it is

there.

It is for this particular particle that let us call particle A explicitly what does the independent

variable that is appearing in the equation is the time. Two independent variables, but because

we are focusing on one particle let us say A only one independent variable time eventually

appears in the final expression. That is to be noted that is a distinction between an Eulerian

representation and a Lagrangian representation.

In eulerian representation, the acceleration of the particle was in terms of x. If you specify x I

can calculate the acceleration fluid particle. In this case, the acceleration fluid particle is in

terms of the time, because we were working in Lagrangian representation and that is what so,

acceleration at any time t of the particle, that was initially at x = 0 ok. So, one independent

variable is t, another independent variable is hidden here. We said particle A, initial position

and that is what is specified and then another independent variable is time, acceleration if at

any time t of the particle that was initially; so which means fixing a particle ok.

(Refer Slide Time: 20:17)



Now, the question said, what is the acceleration of the particle at the beginning of the

channel, and at the end of the channel. It did not tell us time, there was no time straight away

involved in it, but now because we follow the Lagrangian approach our expression involves

time. So, we will have to get a time position relationship. We know the position we have to

find out the time ok.

𝑥
𝑝

= 𝐿(𝑒
 

𝑣
1
𝑡

𝐿 − 1)

Now to find the acceleration of particle when x = 0 and x = L, in Lagrangian approach as I

told you now acceleration of a particle is expressed in terms of time. So, need to find out the

time at which particle is at the beginning, at the end. We are given the position we need to

find the time.

How do we do that? We have got an expression for the position as a function of time. Use the

same expression, but now what I want to find out is this time. I know the position from the

velocity field we integrated it and got an expression for the position as a function of time, but

now I want to find out the time given the position. So, just rewrite it to find out the time. We

know that first is the position xp = 0. Beginning of the channel we have taken that as an initial

condition t = 0, so x p = L at the end of the channel. You substitute L and find out t.

𝑥
𝑝

= 0;                     𝑡 = 0

𝑥
𝑝

= 𝐿;    𝐿 =  𝐿 𝑒
 

𝑣
1
𝑡

𝐿 − 1( );     𝑒
 

𝑣
1
𝑡

𝐿 = 2;        𝑡 = 𝐿
𝑣

1
𝑙𝑛⁡(2) 



The particle is at the end of the channel at the time given by t is

𝑡 = 𝐿
𝑣

1
𝑙𝑛⁡(2)

To find out acceleration we need to substitute this at a time there. We have got both the time

at the beginning and at the end of the channel. So, substitute t = 0. So,

𝑎
𝑥

𝑝

𝑡 = 0( ) =
𝑑𝑣

𝑥
𝑝

𝑡( )

𝑑𝑡 =
𝑣

1
2

𝐿 𝑒
𝑣

1
0

𝐿 =
𝑣

1
2

𝐿

The acceleration of the particle at the beginning of the channel same as what you have got

from the Eulerian approach.

In the second case, the time is given by

𝑡 = 𝐿
𝑣

1
𝑙𝑛⁡(2)

So, substitute for t and you will get the acceleration as twice which was the beginning of the

channel.

𝑎
𝑥

𝑝

𝑡 = 𝐿
𝑣

1
𝑙𝑛2( ) =

𝑑𝑣
𝑥

𝑝

𝑡( )

𝑑𝑡 =
𝑣

1
2

𝐿 𝑒𝑙𝑛2 = 2
𝑣

1
2

𝐿

The same expression which we obtain from the Eulerian approach. So, a very nice example

which clearly illustrates the first use of substantial derivative. You give me velocity field; I

will give you acceleration of fluid-particle using Eulerian variables alone.
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A second approach is the Lagrangian approach. We all worked in terms of Lagrangian

position, velocity, acceleration, but now the time is a variable. We found out what is a time

corresponding to the position and then and that is what I will show here. I have taken a

channel of length 1 meter, I have taken the velocity as a v1, at the beginning of the channel as

0.1 meters per second.

Let me run the first video. Now what has happened is the particle has started at the inlet and

then it has moved through the channel till the end of the channel. I have done this simulation

from t equal to 0 to t till it reaches the end of the channel and in this case, it was roughly

about 6.9 seconds; 0 to 6.9 seconds.

Now, these are the position of the particle at equal time intervals of 0.69 seconds, and as you

see (referred slide) the distance moved is increasing as it travels along the length of the

channel. Each gives the position at the interval of 0.69 seconds for the same time duration it

covers a longer distance as it goes to the channel; obviously, because of higher velocity. The

fluid experiences higher velocity as it goes through the channel. So, it travels long distances

for the same time interval.

Now let me show again the second simulation, I have shown the successive position of a

particle and the entire particle trajectory as well. I had just shown the instantaneous position

of the particle.



This shows what happens as the fluid particle flows through the channel as shown here. The

time as I told you I simulated this from 0 to 6.9 seconds. Roughly that is a time where it

reaches the end of the channel for these and it also shows up remember we have got

expressions for the position, the velocity, and then the acceleration of the particle.

So, I have shown the position of the particle, the velocity of the particle, and the acceleration

of the particle and as the particle moves through a channel they keep changing and you can

take a look at it. So, you should focus, for example, this time increases by increments of 0.1,

and accordingly the special location changes, velocity will increase, the acceleration also

increases.

Remember from our expression the velocity also doubles, acceleration also doubles and that

is what happens here. The time increment is 0.1 second; that run simulation for every 0.1

seconds, the x coordinate and the velocity, I have done simulation for 6.9 seconds; so, almost

at the end of the channel 1 meter and the velocity as increased from 0.1 m/s to 0.2 m/s,

acceleration increase from point naught 1 m/s2 to point naught 2 m/s2; that is what happens.

Whatever we have seen more mathematically in terms of expression shown in terms of

simulation fine.

(Refer Slide Time: 27:58)

It's gone through a series of steps, I thought I will just summarize them here. In the Eulerian

approach, you were given the velocity field, we find the acceleration of a particle as a

function of position using substantial derivative ok. And find the acceleration of the particle



at the required position, because the expressions themselves were dependent on position. So,

given the position, they substitute to find out the expression very simple.

The Lagrangian approach given the velocity field, but we are not using it directly; find the

position of the particle as a function of time by integration. That is the first step we did. Once

you know the position, differentiation once twice will give you velocity and acceleration of a

particle as a function of time; that is to be noted. Now, we need to find out the time

corresponding to the required position. That is what we did because we know the position as

a function of time, then substituted in the expression of acceleration which was in terms of

time ok. So, now, look at the advantage of the substantial derivative, it does a lot of help for

us just because it expressed a Lagrangian rate of change in terms of the Eulerian field, the

number of steps required was very less.

Look at the Lagrangian approach, we had to find out position, velocity, acceleration,

substitution in terms of time etcetera, but remember this is more natural; why? That we did

right from your particle mechanics principles. This is more closer to measurement because

the velocity field is what you are measuring and that is the significance of substantial

derivative ok. It gives you a meaning of Lagrangian derivative just from Eulerian

measurements.


