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We have derived the linear momentum balance and then, we have proceeding towards the

Navier Stokes equation. To understand the surface forces on the right hand side, we going to

solid mechanics understood stress came back to fluid mechanics understood total stress and

then we had completed the differential linear momentum balance. And then we realize that

the viscous stress tensor components are unknowns they have to be related to velocity

gradients.

To understand velocity gradients, we need to understand displacement gradients. So, we went

to solid mechanics discussed about strain and then now we are coming back to fluid

mechanics to discuss about strain rate that is where we are.
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In terms of our journey to the Navier Stokes, we derived the differential form of the linear

momentum balance with the viscous stresses in the right hand side. They need to be related to

the velocity gradients. To understand velocity gradients we first understood displacement

gradient by taking a diversion to solid mechanics and then we discussed strain, displacement

gradient, strain tensor, rotation tensor etcetera. Now, we are going to analogously discuss

these two blocks for fluid mechanics, the highlighted two blocks are going to be discussed

now.

(Refer Slide Time: 02:03)



We have discussed difference between solids and fluids after our first visit to solid

mechanics. When we came back to fluid mechanics after the first visit to solid mechanics, we

discuss difference between solids and fluids. So, once again now, we are coming back to fluid

mechanics. So, we will discuss the difference between solids and fluids it will be a revision,

but we will highlight one particular aspect there. The topics which are going to follow are

analogous to what we discussed under strain when we discussed solid mechanics.

● There we discussed deformation, normal and shear strain, here we are going to

discuss rate of deformation, normal and shear strain rate.

● There we discussed displacement gradient tensor; here we are going to discuss

velocity gradient tensor,

● Then we related the strain and displacement gradient; here we are going to relate

strain rate and velocity gradient and

● There we expressed the displacement gradient tensor as sum of strain tensor and

rotation tensor. Analogously here, we are going to express the velocity gradient tensor

as sum of strain rate tensor and rotation rate tensor.

So, these four topics are almost analogous to what we discussed for strain in solid mechanics.

(Refer Slide Time: 03:44)

Let us start with the comparison of solids and fluids; we discussed the difference between

solids and fluids under two categories. First set of characteristics for which we know the

difference between solids and fluids that is what is shown here. We discussed it in terms of



distance between adjacent molecules, molecular arrangement, strength of molecular

interaction, ability to conform to shape of container, capacity to expand without limit and

able to exhibit a free surface.
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So, these differences all known to us, then we went on to discuss the difference between

solids and fluids which is from a mechanics point of view and that is this slide about. So,

when we apply a tangential force to a solid, it starts deforming and deform until the internal

stresses balance the external apply tangential force and then it stops deforming and that is

what is shown here, an undeformed state and a deformed state.

So, it goes from one equilibrium state to another equilibrium state and then it stops deforming

and so, solids can resist shear stress under static condition and that is what is shown here D C

initial state D‘ C’, the final state. And if you remove the tangential force, the solid goes back

to its original state.

Now, if you apply a tangential force for a fluid as shown in the right hand side, it starts

deforming, but now it continues to deform as long as you apply the tangential force and that

is what is shown here D C are the points at some time t. As long as you apply, D moves to D’

or D’’ C moves to C’ or C’’. So, it continuous to deform as long as you apply the tangential

force and now if you take out the tangential force, it just retains the final shape as such ok.

So, that is why we say fluids flow.



So, now, what is the implication? because of this fluids cannot resist shear stress under static

condition. Even if apply a very small tangential force, they start moving. So, fluids cannot

resist shear stress; however, small it is under static condition, they immediately start flowing.

Now, we also discussed the difference between solids and fluids using this coaxial cylinder

arrangement.

If you have a solid between the two cylinders and then try to rotate the inner cylinder, then

the force required to rotate depends on how far the solid is deformed from an initial state. So,

there is some initial state and more you deform from the initial state, more the force is

required that is what happen in the case of solids. But in the case of fluid what happens? If

you fill a fluid between the two cylinder; now the force required to rotate in the cylinder will

now depend on how fast you rotate the cylinder so, depends on the rate of deformation.

So, in the first case in the case of solids it depended on an how far it is deform which means

depends on deformation, the force depends on deformation. In the case of fluids it depends on

how fast you rotate the cylinder and other words the force required to rotate the in the

cylinder depends on the rate of deformation that is the key difference between solids and

fluids which are going to take as a basis for further discussion.
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We also shown animation to show that fluids deform continuously, there is a flow between

two parallel plates; the bottom plate is fixed the top plate is set to motion at a constant



velocity and the velocity profile is linear we have come across the several times. We𝑣
𝑝

identify a region of fluid and then if you focus on that region of fluid, we can easily see that it

continuously deforms as long as the plate is moving; this region continuously deforms and

that is what we say that fluids deform continuously. So, the animation shows that this region

continuously deforms of course, it replace back, but otherwise it deforms continuously.
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Now, this table highlights the differences from a mechanics point of view which is of present

interest to us what are the differences response to shear stress. The key difference is that

solids resist deformation, fluids resist rate of deformation as you have seen the cylinder

example is the best example to understand this. On one case force depends on deformation;

other case the force depends on rate of deformation and we have already discuss this earlier

ability to resist small tensile stress and compressibility.
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So, now let us summarize all the differences between solids and fluids.

● Solids resists shear stress under static condition, fluids cannot resist shear stress under

static condition even for a very very small shear stress. They cannot resist shear stress

under static condition.

● Solids reach an equilibrium stage and stop deforming, fluids deform continuously and

so, we say fluid flows.

● When the tangential force is removed, solids regain original shape. Fluids do not

return to their prior shape.

● Now, the major difference which is of importance to us for the present discussion is

that the case of solids force depends on deformation, with the case of fluids force

depends on rate of deformation.

When we discussed stress for a solids and then when we came back to fluids to discuss about

total stress we took lead from the first difference and then we said fluids under static

condition have some stress when they flow their additional stress and so on.

Now, the difference which is of relevance to us is the last difference and that is why this has

been highlighted in the earlier difference the first difference was highlighted now, the last

difference highlighted and we are going to take lead from this difference. It says force

depends on deformation for solids force depends on rate of deformation for fluids.
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Now, based on this difference, we can intuitively write this table.

Solids Fluids

Deformation Rate of deformation

Translation, Rotation, Normal strain,

Shear strain

Translation rate, Rotation rate, Normal

strain rate, Shear strain rate

Displacement field, Displacement

gradient

Velocity field, Velocity gradient

ϵ
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𝑥

∂𝑥 ϵ
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Now, we are going to relate the normal strain rate to the velocity gradient. So, of course, we

are going discuss further slides in detail about all this, but now based on the fact that force

depends on deformation for solids and force depends on rate of deformation for fluids, we

can come up with this table.
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Now, the way in which we are going to discuss the order of topics, they are all going to be

analogous to what we discussed for strain under solid mechanics. So, some will be recall

slides, then other will be new slides for fluids. So, this is the recall slide where we defined

normal strain and then shear strain.

ϵ
𝑛
(𝑃) = ∆𝑆*−∆𝑆

∆𝑆  

ϵ
𝑛

> 0:   𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

ϵ
𝑛

< 0: 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

For normal strain, it is change in length by original length at a point we take a small line

element along direction n and the change in length by original length gives a normal strain.

γ
𝑛𝑡

𝑃( ) = π
2 −< 𝑅*𝑃*𝑄* 

γ
𝑛𝑡

> 0:   𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒

γ
𝑛𝑡

< 0: 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒

For the case of shear strain, we take two perpendicular line elements and then look at the

change in angle between the initial state.
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Now, we will analogously introduce two measures of rate of deformation earlier it was two

measures of deformation. When we discuss solid mechanics we said there could be change in

length, change in angle. They are quantified in terms of normal strain, shear strain. Similarly

here for the case of fluids, we are going to discuss normal strain rate and shear strain rate and

this slide is for normal strain rate.

So, how do we define normal strain rate? Earlier we have seen strain to be defined as change

in length of line element, now it is rate of change in length of line element. Of course,

normalized by the length. So, rate of change in length of line element is a normal strain rate,

you express this formally as

ϵ
𝑛
˙ (𝑃) = ∆𝑆*−∆𝑆

∆𝑆  

ϵ
𝑛
˙ > 0:   𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

ϵ
𝑛
˙ < 0: 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

Now, the last part of the definition is same as normal strain which tells about change in length

by original length. Now we need to express in terms of rate of change of length. So,

numerator tells change in length divide by gives rate of change in length of course, per∆𝑡

original length. And now we have two limits the first limit is as we have seen already. At a



point we consider a small line element that is why and now we are divided by and∆𝑠→0 ∆𝑡

the rate is defined as the limit of .∆𝑡→0

So, that is why you have another limit here which tells . So, one limit makes the∆𝑡→0

definition of normal strain rate where at a point that is why , other limit makes the∆𝑠→0

definition of normal strain rate instantaneous.

This animation shows rectangle element. Let us see what happens. If you focus on the line

element A D, its length keeps increasing with respect to time; if you focus on the line element

A B, its length keeps decreasing with time. So, this is what we mean by normal strain rate. In

one case of course, it is greater than 0 which means the length increases with time that is a

that is happening for line element along x axis. If you focus on line element along y axis ϵ
𝑛
˙

its length decreases with time and hence the normal strain rate is less than 0. So, this is a

simple animation.

Earlier when we were discussing solid mechanics, we were discussing yeah line element,

initial length and then final length, but now we are interested in what is the rate of change of

that length; of course, normalize, but normalize by the instantaneous length. So, same

significance, but now it is respect with respect to time and that is what you see here the length

of line segment AD keeps increasing, length of line segment AB keeps decreasing.
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So, now let us define shear strain rate ok. How do you define? Earlier we said change in

angle between two line elements; now it is rate of change in angle between two line elements.

So, let us see how do you formally define the shear strain rate.

γ
𝑛𝑡
˙ 𝑃( ) = 1

∆𝑡   [ π
2 −< 𝑅*𝑃*𝑄*]  

γ
𝑛𝑡
˙ > 0:   𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒

γ
𝑛𝑡
˙ < 0: 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒

So, the terms within bracket are the same what we have seen earlier for the definition of shear

strain and now we are interested in the rate of change of that. So, divide by and then∆𝑡 ∆𝑡→0

and once again, we have two limits here. The first limit tells that at a point we consider two

line elements which are perpendicular to each other. So, that makes the definition of the shear

strain rate valid at a particular point and we have another limit . So, that makes the∆𝑡→0

definition of shear strain rate valid at every instant of time.

In the case of solid mechanics, we need a definition which is valid at every point, but now we

have a definition which is valid at every point and every instant of time. And let us look at

this animation where the initially the angle BAD was ninety degrees and now the sides the

angle between AB and AD decreases, they come closer to each other and the rate at which

this angle changes is what we mean by shear strain rate.

Like to mention that the way in which you understand shear strain rate is that we consider

two line elements. Let us say sometime t and some other time t + . Let us say the two line∆𝑡

elements become like this, they come closer to each other and now the rate of change of angle

is the shear strain rate.

And the rate at which this change happens in the limit of is the shear strain rate. Then∆𝑡→0

rate at which changes with time is also shear strain rate either way of looking at it andα + β

remember always it is the change in angle per unit time and the angle at time t is always .π
2

So, in this case the shear strain rate strictly applies only to the initial time instant not as it

progresses.

Of course, if the shear strain rate is greater than 0 which means that the two lines have come

closer towards each other; there is a decrease in angle between them with respect to time.



And if the shear strain rate is less than 0, then the two lines have gone away from each other

which means there is increase in angle between them with respect to time. Whatever we

discussed for solids under static condition, now we are discussing as a rate.


