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Then we introduced displacement field and then displacement gradient tensor for solids first             

for 1D, 2D and then 3D. And what was the definition of displacement gradient? We consider                

two adjacent particles and then take the difference in displacement of two adjacent particles,              

divide by the distance between the same particles. We have also said that the two particles                

can be considered along x, y, z directions and displacements could be in x, y, z directions and                  

hence the displacement gradient as a tensor. 



(Refer Slide Time: 00:58) 

 

And now let us see how do we extend that for fluids. This part is same as what we have seen                     

in the last slide; for solids we have  

isplacement gradient  D = Distance between the same particles
Dif ference in displacement of  two adjacent particles  

Now for the case of fluids, let us define the velocity gradient. How do we define velocity                 

gradient? Instead of displacement now we take velocity. So, the definition is  

elocity gradient  V = Distance between the same particles
Dif ference in velocity of  two adjacent particles  

Now, can analogously write the velocity gradient tensor; once again it is a tensor the reason is                 

we can consider the particles along the x, y, z directions and the difference in velocity can be                  

along once again x, y, z directions resulting in a velocity gradient tensor. 

elocity gradient tensor  V =          [ ∂x
∂vx

∂y
∂vx

∂z
∂vx

∂x
∂vy

∂y
∂vy

∂z
∂vz

∂x
∂vz

∂y
∂vz

∂y
∂vz ]  

Other way of explaining is that velocity itself is a vector, there are three components. Now,                

you are looking at the gradient of that velocity component that could be in three directions                

resulting in a tensor; velocity in three directions, the gradient in three directions, resulting in               

9 combinations of directions, resulting in a velocity gradient tensor. 



(Refer Slide Time: 02:38) 

 

Then what we did in solid mechanics was having discussed strain and discussed displacement              

field, displacement gradient. We expressed strain in terms of displacement gradient and we             

are going to repeat the same exercise here. But now find relationship between strain rate and                

then velocity gradient. This is the diagram which we have discussed to relate strain and then                

displacement gradient where we initially took a two dimensional plate or a two dimensional              

region of length   and then the subjected to a force.x∆ y∆   

And so, there was translation, rotation, normal strain, shear strain meaning change in length              

and change in angle as well. So, PQRS became P*Q*R* S*. And, you also noted the                

displacements of all the points. For example, is the x displacement of P and is       |ux x,y         |ux x+∆x, y   

a x displacement of Q and  is a y displacement of P,  is a y displacement of Q.|uy x,y |uy x+∆x,y  
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And, we derive the relationship between normal strain displacement gradient. So, let us             

quickly recall that so that we can easily understand the relationship between normal strain              

rate and velocity gradient which we are going to derive in the next slide. Normal strain is                 

defined as change in length by original length we are considering a line element along x axis                 

and hence it is  

 εxx = PQ| |
P Q − PQ| * *| | |

 

Then we said we are going to assume infinitesimal rotation.  

 εxx = ∆x
x+∆x+u | −(x+u | ) −∆x[( x x+∆x,y) x x,y ]

 

So, we said the length of P*Q* is same as the projected length of P*Q*. So, length of P*Q*                   

becomes the difference in the x coordinate of Q* and then P*. 

Now,  cancels out and we are left withx∆   

 εxx = ∆x
u | −u |[ x x+∆x,y x x,y]

 

When you take limit  we getx→0∆   

εxx = ∂x
∂ux  



So, what we have done is related normal strain to the displacement gradient. Now, see               

analogously we derived relationship between shear strain and displacement gradient where           

we derived  

γxy = α + β = ∂x
∂uy + ∂y

∂ux  
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We also derived relationship for rigid body rotation and we defined that as average of               

rotations of two perpendicular line segments. We took into account the sign as well and we                

got the expression  

 ωxy = ωz = 2
1 ( ∂x

∂uy − ∂y
∂ux)  

So, one is anti-clockwise other is clockwise. So, we take in account the sense of rotation. 



(Refer Slide Time: 07:50) 

 

So, now we are ready to derive the relationship between strain rate and velocity gradient. The                

same figure has shown here just colored in blue to get a feel that we are looking at a fluid                    

element. Let us see how do we derive  

The normal strain rate is rate of change of length per unit length. Change of length per unit                  

length this normal strain; rate of change of length per unit length is the normal strain rate.                 

How do we understand this normal strain rate so, that it will be easy to derive. 

L
1

dt
dL = dt

L
dL

 

Suppose if you have a rod and just imagine that the length keeps increasing, then at any                 

instant of time the rate of change of length divide by the instantaneous length is the normal                 

strain rate. Or let us say there is a thread whose length keeps increasing with time, then how                  

do you define normal strain rate? The rate at which that length changes which is .dt
dL   

The nomenclature is shown here divide by the instantaneous length, length at any instant of               

time that is the normal strain rate. Now, we are going to apply this for this small line segment                   

PQ; let us do that. So,  

ε ̇xx = 1
∆x Dt

D∆x = Dt
∆x
D∆x

 

Now instead of L, I have written this expression in terms of because equivalent to our            x∆   x∆     

L. Now the D which is used here is capital , the reason is this derivatives taken following          D
Dt         



the fluid motion. Remember the this line PQ is in a fluid and the rate of change of its length is                     

determined by following its motion along with the fluid that is why we take a substantial                

derivative .D
Dt  

Now, you can express this as,  

 ε ̇xx = lim
∆t→0

1
∆t PQ| |

P Q − PQ| * *| | |
 

So, this is the expression for the normal strain rate for a line element along the x direction.                  

So, now, let us express this change in length by original length exactly as we have done                 

earlier. So, this expression is exactly same as what we have done earlier in terms of                

displacements. 

 ε ̇xx = lim
∆t→0

1
∆t ∆x

x+∆x+u | −(x+u | ) −∆x[( x x+∆x,y) x x,y ]
 

Now the difference comes, remember these are in terms of displacement that is why we had a                 

quick recall of derivation of normal strain. Now these expressions are in terms of              

displacement, we will have to express in terms of velocities. So, we will express the               

displacements in terms of velocity into , we consider small time interval over the time      t∆       t∆     

interval, we express the displacement as the velocity into that velocity is some average         t∆       

value over the .t∆   

 ε ̇xx = lim
∆t→0

1
∆t ∆x

x+∆x+v | ∆t −(x+v | ∆t) −∆x[( x x+∆x,y ) x x,y ]
 

So,  is expressed as . Now, x cancels out,  cancels out and then we have|ux x+∆x,y | ∆tvx x+∆x,y x∆  

 

 

 

 ε ̇xx = lim
∆t→0

1
∆t ∆x

v | −v | ∆t[ x x+∆x,y x x,y]
 

 Now of course,  cancels out and this becomest∆   

ε ̇xx = ∂x
∂vx  



Now, you are taking limit which means that the velocities become instantaneous     t→0∆         

values that is the difference between the two steps, when you cancel out and when you             t∆     

are taking . These two velocities were average velocities over some time interval ,  t→0∆            t∆  

but now we are taking so, they become instantaneous values. So now, this gradient of     t→0∆            

velocity is gradient of instantaneous velocities and as we expect this relationship is valid at               

every instant of time and also at every special location.  

So, the relationship between the normal strain rate and velocity gradient is given by  

ε ̇xx = ∂x
∂vx  

If you compare with the corresponding relationship for solids which is normal strain is equal               

to the displacement gradient ok. So, if you want to let us say vaguely say, it is just time                   

derivative on both sides that is a little crude way of saying the time derivatives of course,                 

substantial time derivative.  

So, one way it is just time derivative on both sides this I would say crude view point will help                    

us to extend analogously all the relationship. Though we have done the derivation in detail,               

this will help us to understand and write the expressions analogously. Of course, this              

animation has been going on which shows which I have seen already shows the that the                

length of line segment AD keeps increasing and length of line segment AB keeps decreasing. 
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This rewritten from the last slide normal strain rate 

ε ̇xx = ∂x
∂vx  

Now, as we have discussed we can now quickly write the expression for shear strain rate                

which is  shear strain rate.γ̇xy   

γ̇xy = ∂x
∂vy + ∂y

∂vx  

So, once we understand that is just time derivative for quick understanding, then we can               

analogously write all the expressions. You can also introduce  

 ε ̇xy = 2
γ̇xy = 2

1 ( ∂x
∂vy + ∂y

∂vx)  

And, of course, we have this animation. So, one for normal strain rate the left hand side and                  

the right hand side is for shear strain rate; one for normal strain rate, the left hand side. The                   

right hand side is to illustrate shear strain rate and one in which the length keeps increasing or                  

decreasing other in which the angle decreases with respect to time. 

Once again want to mention that the shear strain rate is always with reference to two line                 

elements which are perpendicular to each other. So, only the initial a time let us say whatever                 

time where we have two perpendicular line segments and the angle decreased between the t               

two line elements that rate of change of angle is a shear strain rate. It is not applicable                  

throughout the motion of the fluid element. 
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We can also relate rotation rate and then velocity gradient. We said for the case of rotation,                 

we define it as average of rotation of two perpendicular line segments. Now, it is very simple                 

average of rate of rotation of two perpendicular line segments. What does it mean? lets say if                 

you consider two line segments P Q and R S which are perpendicular to each other, rate at                  

which P Q rotates plus rate at which P R rotates average of these two is the rotation rate. Of                    

course, taking into account the sense of rotation so, rotation rate is  

ω    ˙ xy = 2
1 ( ∂x

∂vy − ∂y
∂vx)  

 


