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Let us write the Newton’s Law of Viscosity; first on the old fluid mechanics sign convention.

The viscous stress tensor is related to the strain rate tensor by the equation

τ = 2μ𝐷

And in terms of components these are the equations.
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Left hand side we have the components of the viscous stress tensor, and right hand side or in

terms of the components of the strain rate tensor, which of course, we are discussed we are

familiar with this.



Now, what we will do is we will rewrite the Newton’s law of viscosity following the new

convention. What is that? New fluid mechanic sign convention or momentum transfer

convention we have already reconcile both of them. And both of them have the same sign.

So, what is new? The same equation, but with the negative sign here. So, now,

τ =− 2μ𝐷

How do we interpret ? If you are saying that new fluid mechanic sign convention it isτ

viscous stress tensor no change in that at all, only sign convention has changed. But if you

have same momentum transport convention then it is interpreted as molecular momentum

flux tensor.

So, has two interpretations, one is viscous stress other is molecular momentum flux. Forτ

fluid mechanics is always viscous stress only the sign convention is different, but if you are

saying momentum transport it represents the molecular momentum flux. So, now, just rewrite

the same set of 6 equations including a negative sign that is all, no change at all other than

including a negative sign.
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So, now the left and sides are the components of the viscous stress tensor, once again if it is

the new fluid mechanic sign convention. If you take a momentum transport convention you

interpret the left hand sides as components of the molecular momentum flux tensor that is the

new viewpoint.

So, we have all our discussions based on this one-dimensional Newton of law viscosity. We

are just extended that to the three-dimensional form of Newton’s law viscosity. So, only

conclusion from this side is whatever we have discuss for the simple form has been extended

to the more general 3 D form by including negative sign. One other important point in this

slide is that tau is now interpreted as the molecular momentum flux tensor.
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Now, how do we write the total stress tensor? So, when I write the total stress tensor we are

going to compare the old fluid mechanic sign convention and the new fluid mechanics sign

convention. So, let us look at it. Now, where is the difference? We have discuss already τ

only difference can come from the pressure term. Now, based on the old fluid mechanic sign

convention, since pressure is compressive it is negative.

𝑇 =− 𝑝𝐼 + τ =− 𝑝𝐼 + 2μ𝐷

Remember pressure is always compressive that does not depend on whether old sign

convention new sign convention it is all, it always acts into the control volume. So, the first

two figures are for the old sign convention.

So, in this case if you take a positive phase force is along the positive axis which means that

tensile is positive compression is negative. So, if you now write the components,

𝑇
𝑥𝑥

=− 𝑝 + 2μ
∂𝑣

𝑥

∂𝑥 ;            𝑇
𝑦𝑦

=− 𝑝 + 2μ
∂𝑣

𝑦

∂𝑦 ;             𝑇
𝑧𝑧

=− 𝑝 + 2μ
∂𝑣

𝑧

∂𝑧

𝑇
𝑥𝑦

= μ
∂𝑣

𝑦

∂𝑥 +
∂𝑣

𝑥

∂𝑦( );      𝑇
𝑦𝑧

= μ
∂𝑣

𝑧

∂𝑦 +
∂𝑣

𝑦

∂𝑧( );       𝑇
𝑧𝑥

=  µ
∂𝑣

𝑥

∂𝑧 +
∂𝑣

𝑥

∂𝑧( )

This is same as what you have see in the previous slide just add p to the normal stresses,−

now that change. There is no change in the shear stresses because p is just a normal stress.



Now, the new sign convention. Pressure is again compressive that cannot change please keep

that in mind, but now becomes positive. Why? The last two figures are shown based on the

new sign convention. Here on a positive phase forces along the negative direction. Now, look

at these two arrows, they are representing compressive forces and they have, they represent a

positive stress tensor component. So, the pressure which is compressive the new sign

convention becomes positive.

So, now let us write down the total stress tensor.

𝑇 = 𝑝𝐼 + τ = 𝑝𝐼 − 2μ𝐷

So, in terms of hierarchy first all the discussion of based on one dimension Newton’s law

viscosity. The previous slide we have explain that to the three-dimensional form. Now, you

are further extending and writing the total stress tensor, so, very simple.
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Whatever expression we had in the previous slide based on new sign convention add a plus p

to the normal stress components, because we are still fluid mechanics new sign convention,

tau represent only viscous stresses. So, so to summarize this slide pressure is compressive,

but it is negative in the old sign convention, positive in the new sign convention, that kind of

summarizes this slide.
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Now, what is the implication of our discussion on the liner momentum balance? Now, what

we are going to do now is derive the linear momentum balance in 3 different ways. First is

fluid mechanics old sign convention, then fluid mechanics new sign convention and then the

momentum transport convention. Now, this just a recall whatever we are done earlier for 3D

case, three-dimensional control volume here we are going to do for two-dimensional control

volume, so we will just only list the important steps. So, we will start with the integral form

of the linear momentum balance,
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We took the integral form on liner momentum balance and applied to the applied that for us

small control volume, three-dimensional control volume.

What we have here is a two-dimensional control volume, for sake of simplicity. So, what we

have is the integral linear momentum balance for a fixed control volume, the transient term,

the convection term in the left hand side then right hand side we have body forces because of

the gravitational force and then the surface forces because of pressure and viscous stress. I am

stressing this you will understand why I stress this here. So, let repeat transient convection of

the left hand side, right hand side body and surface forces and body force because of gravity,

surface force because of pressure and viscous stress.



Now, let us look at this control volume quickly all the required quantities are shown here in

one diagram. Earlier when we derived we had different control volumes. Now, let us look at

them. The lengths are and and then this blue arrow marks represent the convective∆𝑥 ∆𝑦

momentum in and then out. Remember all of them refer to x momentum, the second velocity

is and this is because of mass flow in x direction and this because of mass flows in y𝑣
𝑥

direction. Entering at x leaving at x + , entering at y leaving at y + ; so, all the blue∆𝑥 ∆𝑦

colours represent the convective momentum.

Now, all the forces are shown. First, all the surface forces are shown. Let us look at pressure

which is easier. Pressure is always compressive. So, it is acting into the control volume, this

acting into the control volume at x and x + . Now, the viscous stresses are shown and∆𝑥

because it is the old sign convention on a positive phase the force along positive axis and

similarly here on a positive phase forces along the positive axis.

So, this diagram is known to us. In terms of differences earlier we did for 3D, now it is this is

for 2D. Earlier we are shown the convective momentum flux separately, pressure separately,

the viscous stresses separately, now it is 2D all of them are put together. Now, if you simplify

the transient term whatever terms we are now going to list all per unit volume that is after

dividing by , and so the first terms becomes∆𝑥∆𝑦∆𝑧
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Now, coming to the stresses this is positive
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Now, if you substitute all of them, take limit, etcetera.
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This we have already discussed. Of course, written here for 3D. We have discussed for 2D,

but writing for 3D. The transient term and then the convection term, the gravity term, the

pressure term and the viscous stress term; so, this kind of recall only. We already discuss this

for three-dimensional case.
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Now, what do we do? Same derivation, but using the new fluid mechanics sign convention.

So, let us write the integral linear momentum balance.
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Left hand side we have the transient term the convection term, of course, no change because

conceptually we are same, only sign convention is different. So, right hand side still we have

gravity and the surface forces namely pressure and viscous stress. Once again I am stressing



here, next slide this going to change. When you go to momentum transport the first equation

is going to change.

So, once again we want to say transient convection in the left hand side, gravity, pressure,

viscous stress on the right hand side. Now, look at the control volume. In terms of convective

momentum no change, in and out, no change. Respective pressure once again, there is no

change. Why there is no change in pressure? Because it is always compressive. Now, when

you come to the viscous stress, the new sign convention has been adopted. What does it

mean? Once again always the stresses are show in a positive sense.

So, on a positive phase as shown this force acting towards negative x axis, on negative phase

I have shown this force acting towards positive x axis. Similarly, for the shear stresses on a

positive phase force is along negative x axis, on a negative y phase force is along positive x

axis. So, new sign convention has been adopted to show the viscous stress,, no other different

at all compared to the previous representation.

So, now transient term is same.
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𝑥
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The convective momentum term is also same, remember it is out minus in. Once again I want

to stress this. So, it is out minus in, net rate at which convective momentum leaves the control

volume and so, we have taken what is leaving minus entering in both directions, same as

previous slide
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The gravity force is also same
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Pressure term is also same as previous slide, it is compressive
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Now, when you come to the net viscous force terms because the sign convention has changed
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Now, take limit . We will get∆𝑥∆𝑦∆𝑧→0
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So, the last three terms have changed compared to the previous slide because they used a new

sign convention. Earlier all the derivatives are were plus, now all the derivatives are negative,

because of the changed sign convention.


