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Welcome, so in the last class we have discussed the scattering theory in very brief and then what

we said is we can find a number density correlation function and if I Fourier transform it I will

get a structure function that we can get by scattering experiments. So now I will go further from

that point and define what is known as the pair distribution function and then we will derive

expressions for the pair distribution function using the polymer chain and then I will show how

the structure functions will look like for the case of a polymer chain.

So what we had discussed is the number density correlation function that is equal to-

Cnn ( x⃗1 , x⃗2 )→ ⟨n ( x⃗1 )n ( x⃗2 ) ⟩

After Fourier Transform we get-

I ( q⃗ )→ ⟨n ( q⃗ )n (−q⃗ ) ⟩

So now I will  define the pair  distribution function,  we had already discussed what does the

function look like for the case of a liquid, solid and gas but now I will basically derive in two

steps. So I will first define it as the functions g of two positions X1 and X2 that is the probability

of finding a particle at X2 if a particle is at X1 and then I will explain when does it reduces to just

one variable.

So let us define the pair distribution function-

⟨n ( x⃗1 )⟩ g ( x⃗1 , x⃗2 ) ⟨n ( x⃗2 )⟩=⟨ ∑
(α≠ α' ) (α ,α ' )

δ ( x⃗1− x⃗α )δ ( x⃗2− x⃗α
' )⟩



Forα=α '
=δ ( x⃗1− x⃗α )δ ( x⃗2− x⃗α )

¿ ⟨n ( x⃗1 )n ( x⃗2 ) ⟩−⟨n ( x⃗1) ⟩ δ ( x⃗1− x⃗2)

So g of x1 x2 the way we have not defined when we exclude the case α ≠ α’ is the probability of

finding different particle at X2 if a particle is at X1. So the g (X1X2) is the probability of finding a

different particular at X2  if a particle is at X1. So the detail here that we don’t really look at a

particular position but a small volume around that position just to make sure that we cover the

entire space. So when I say at X2 it really means a small volume around X2 which we can write

as-

x⃗2−
δ x⃗2

2
; x⃗2+

δ x⃗2

2
∨d x⃗2

So  we  can  make  2  approximations  here  when  we  are  looking  at  a  homogenous  fluid.  So

homogenous fluid will have the same ensemble average density that is when we have discussed

this for the case of liquid. This is ensemble average is –

Ensemble Average=
N
V

(it isa constant)

 The second approximation is that, we did not look like look at the g of (X1, X2) but we can look

at g of (X1  -X2) what essentially it means is known as translational invariance that applies for

homogenous fluid and the idea is that I do not need to look at every possible pairs of positions

but we can look at only distances between the two positions.

So now we can show the structure function was the Fourier transform of the number density

correlation function in the same way that is structure factor which was an intensive measure so

we divided the structure function by N or V to get the structure factor. The structure factor is

related to the Fourier transform of the pair distribution function again pair distribution function is

like  a  normalised  version  of  the  number  density  correlation  function  just  like  this  structure

function factor is normalised form of the structure function. So the relation that I will not derived

is I can write the structure factor as the following is form of homogenous fluid-



S ( q⃗ )= ⟨n ⟩ [1+ ⟨n ⟩∫ g ( x⃗ ) e−i q⃗ ⋅ x⃗ d x⃗ ]

Here this is the average number density.

Now if the fluid is also isotropic then all the three directions are identical. So in that case we can

actually replace-

g ( x⃗ )≅g (|x⃗|)=g (r )

This is called the radial distribution function, which we have already shown for the case of the

liquid and gas when we have been discussing the form of the pair distribution function for that

liquid and gas we looked at absolute value of x along the x axis and for the case of solid we

chose to use the actual value of x that’s the vector value just because the gas and the liquid is

assumed to be isotropic.

So now let us see how this g of r scale in the case of polymer solution, we will start with a

polymer chain in a dilute solution. In this case the statistics will be similar to the polymer chain.

So we have derived so for a polymer chain in  the dilute  case the number of segments at  a

distance r that is –

n (R )≈M=R
1
ν

Where ν will be the coefficient I get differently for the random walk, self-avoiding walk and

collapse chain case. So if I know the number of segments at a distance r from a given segment or

bead the number density that we see within the small volume pair will give me a measure of the

virial distribution function. 

Other way to say that is let us say if I keep as central at centre the particle which I want to keep

as reference and if I look at a volume r around it assume my sphere of volume r around it and if I

am interested in a number of particles present in that volume at location r that is you may be

interested in a spherical shell that is-



g (r )
δn (r )

4 π r2δr

So if we look at the spherical shell that is at distance r and we are looking at a shell of thickness

delta r, so as I said earlier that we are interested in a small volume at distance r. So then the g of r

would scale like the number density that is present inside this particular shell of thickness delta r

and that would then become the number of segments present in that volume that I represent using

delta r/the volume of that segment which we can represent in more rigorous way as-

g (r )
4
3
π [(R+

δR
2 )

3

−(R−
δR
2 )

3

] 4 π r2δR
1

4 π r2

dr
dr

n
r 3∨

n
rd

Where d is dimensionality and we know what the N is scaling like-

g (r ) r
1
ν
−d

Now we will associate this with fractal dimension df and we get-

g (r ) r (d f−d )

If I do a Fourier transform of this then I will not divide it what we get is-

S (q ) (qb )
−1
ν ≡S (q ) (qb )−d f

So now again we can do it for different cases because we know the ν values corresponding to

them. For example if I am doing in three dimensions then for θ solvent when we have ideal chain

ν=1/2, g of r will scales like r2-3 that is r-1 and s of q will scale like q-2 .  In a good solvent ν is 3/5.

So g of r will  scale like r-4/3 and s of q will  scale like q-5/3,   in the bad solvent the chain is

collapsed we get ν=1/3 and g of r scale like 1 and s of q scaling like q-3.

So, this tells me the behaviour with q now there is a point to note here that my q goes like 1/λ

and λ sets the characteristic length scale that I am looking at. So if I look at smaller q value that

gives me the behaviour at longer length scales. If I look at the larger q values that gives me the

behaviour at smaller length scales. So essentially when the length scale λ become comparable to

the chain radius it is no longer a fractal as soon as we look at this length scales higher than the



chain  dimensions  because  the  whole  idea  of  self-similarity  and  fractal  nature  will  apply  to

segments of the chain not the whole chain.

So whatever we have derived will be only true at length scales that is r values significantly lower

than the Rg value, at larger length scales we will have slightly different behaviour that we will

not derive. So in this way we have a systematic way starting from the fractal dimension of the

polymer chain that we have derived in different condition by Fourier transforming we get what

do we expect in the s of q and I have said earlier s of q is the experimental output from the

scattering experiment. So we have a way to verify from experiment whether this is scaling is

observed or not in the particular case or vice versa by looking at the scattering plot we can

identify whether we are in a good solvent regime or bad solvent regime or a theta solvent regime.

This  is  like a  way to look at  the structure of the chain and this  adds to  the size and shape

characterization  that  we have  discussed  earlier. So  with this  now I  want  to  take  to  another

dimension of things that is all these are like theoretical is tough and for many cases that we have

shown we can do very nice derivations. But we can also get these results and actually more

results if I also employ simulations. In that case let we can actually see what the polymer chain

looks like in different solvent and we can have a more accurate way in a sense to get the scaling

laws because the simulations will not have some of the assumptions that the Flory theory made

for example we assume that the concentration of segments are uniform, the inter connectivity of

the segments were ignored for the purpose of interaction energy and elastic energy was taken for

an ideal chain even though the chain was not ideal.

So  if  I  do  a  simulation  we  can  relax  to  assumptions  and  try to  get  best  scaling  law more

accurately and in fact it turns out the simulations itself are not very difficult to perform. So we

already had  discussed  the  simulations  in  the  case  of  ideal  chain  earlier  where  I  said  I  can

generate many confirmations of a polymer chain get there for example the end-to-end distance

squared values taken ensemble average over many confirmations and then we can get the scaling

laws that we got by the theory.



Now I want to extend the idea to the cases where we do have an excluded volume interaction,

simulations can be of two types- the most common type in polymer literature is the Monte Carlo

simulation at least for the toy models we have discussing and then there is other class that is

molecular  dynamics  simulations.  Actually  there  are  many  other  methods  that  have  been

developed either as some sort of extension of these two methods or methods of their own. 

So I will discuss the Monte Carlo simulation molecular dynamics simulations in somewhat more

details. So I want to first give you again the idea of how the Monte Carlo simulation works and

then we will see how we apply on a polymeric system.

So the basic idea of a Monte Carlo simulation is the following, we start with a configuration of

system that is we start with the polymer chain in fact the Monte Carlo is a very general and the

key idea is that we start with simulation box that is representative of the entire system I am

considering. So for example if in reality we have polymer chains contained in the beaker the case

I was telling you when I was discussing the effect of concentration. So it is probably not worth it

and it  is  probably very expensive to  come to do experiment  the simulations over  the entire

beaker. So we will not do simulations over the entire beaker, we will  do simulations over a

smaller volume within the beaker that represents the condition in the beaker.

The simulation box is not the same as the experimental container that we are using, simulation

box is something that represent the bulk behaviour that you see in the experiment. For example I

can  draw  small  volume  inside  my beaker  and  that  volume  will  contain  certain  number  of

molecules and atoms and we will simulate that in the simulation and then we expect whatever

behaviour we do get represents the behaviour of the bulk, the first thing is the simulation box

should be significantly large that it is representative of what is going on in the system. At the



same  time  it  cannot  be  very  high  because  if  it  is  very  high  then  the  simulation  becomes

computationally expensive.

So  I  will  use  the  word  representative  of  the  bulk  system  that  is  at  least  for  the  dilute

concentrations we can hope to simulate only one polymer chain in a small simulation box and

that will show the behaviour that we have got for the scaling laws polymer chains. If it is an in

entangled systems on high concentrations maybe we need to take a larger volume considering

more polymer chains but at least for the dilute case I am interested in this scaling law for a single

polymer chain we can just make a simulation box that contain one chain in the system.

So let’s say this is my simulation box and we have a chain contained in there let’s say I am

representing the polymer chain using the bead spring model. So we use the bead spring model,

now if you recall from the Flory theory I represented the energy of the chain as sum of the elastic

energy and the excluded volume energy. 

∫¿

U=U elastic+U ¿

So in this case the elastic energy is because of the springs that connects the beads. So I am

assuming that between every adjacent bead in the polymer segment we have a spring of certain

spring constant K, for the Gaussian chain we have derived that the spring constant K of the

spring goes like kBT but is general we can keep k value that is arbitrary for the simulation. So it

can either be written as in terms of extension-

U ( x )=
1
2
k x2

¿
1
2
k (x−x0 )

2

This becomes equilibrium or average segment length. This takes care of the elastic parts, so now

if you have for example n beads in the system you will have n-1 springs and we look at the

spring energy of all those things that gives me the elastic energy. If I look at the interaction

energy now the interaction energy can be present between every pair of beads in the system. So

let us say if I look at a particular bead i here this bead interacts with 1, 2, 3, 4, 5 until all the

beads that we have in the system. So the interaction energy in the two body interaction is-



U
∫¿

(i, j )

∫¿
( i)
=∑

j=1

N

¿

U ¿

U that represents the interaction between I and J. So we can write some sort of pair interactions

and that’s way if I count all the pair interaction for pairs containing the particle we get the total

energy due to interaction energy for that particular bead. So if I sum that over all the beads we

get the total energy due to interaction in the system so-

∫¿
i
=∑

i=1

N

∑
j=1

N

U
∫ ¿

(i , j )

U ¿

∫¿=∑
i=1

N

¿

U ¿

So we have not yet said what that interaction energy form is but we know that we have to sum

over all the pairs in the system. In fact to be precise we have to exclude the cases where j is not

equal to I because there is no self-interaction considered. The interaction energy only happen

between two beads which are distinct. In fact in many simulations it is preferable to also exclude

the adjacent beads that is we also do not want j to be equal to i- 1 and j to be equal to i+1 because

the interaction between adjacent  beads  are  anyway captured using the spring force,  but  that

depends on the model. The key ideas that we have to exclude the self-interactions and we may or

may not exclude the interaction energy between the adjacent beads where the interaction energy

is only referring to the non-bonded interactions the bonded is already considered in the first part.

So now the question is that how do I construct the form of this Uint function, and that’s where

there is  a very famous potential  that  becomes very useful it  is  known as the Lennard-Jones

potential. One of the first applications of potential was to explain real gases which is already is

something that can give you Van der wall equation of state. The potential works like this, so I can

look at Uint between a pair of particles at a distance r as a function of r, now this particular

interaction should possess certain features. First of all it should capture the range of interaction.

So this particular potential is already for short ranged Van der wall interactions. So for example



we have Van der wall attractions we know that it decays like r-6. Now the issue is this if I just use

this form then r=0 we will have in infinite interaction energy that would mean that all the beads

will collapse into one ok. So this goes against the idea that the beads will contain certain amount

of  hard core that  is  giving rise to  self-  avoiding walk that  we discussed in  good solvent  or

excluded volume as we discussed in the Flory theory. So what we typically also want is want that

at small distances there should be some repulsion which is referred as the hard core repulsion

that prevents overlap of each because again if it is not found not present then the overlap of

beads give rise to very high negative energy and if I do such a simulation I always go to one bead

collapsing into all the beads collapse in 1 bead.

There is no specific form for this particular potential when I say no specific from there is no

physical  basis  of  choosing what  the  hard  core  repulsion  should  be,  in  practice  it  should  be

infinite  at  r  =  0  and non-zero  otherwise  but  that  is  difficult  to  difficult  to  handle.  So  it  is

preferable to have a very steep potential for the reasons you will see it works better than having

an infinite energy hard core at r=0. So then I can construct what is known as the Lennard-Jones

interaction as- 

∫¿
LJ (r )=4∈[( σr )

12

−( σr )
6

]
U ¿

So in the particular expressions σ is sort of a length scale, σ is the value at which the ν interaction

crosses 0 you can put in σ=r here we can see it goes to 0 and then if I look at the depth of the

potential the depth is given by epsilon and I want to know where the minimum lies I can do

minimization of u with respect to r which gives me-

du
dr

=0

¿>
−12σ12

r13 +
6σ 6

r7 =0

r¿
=2

1
6 σ



So, beyond the value of r* we switch on the attractive Van der wall in this particular case below

that we have a steep potential which becomes r distance σ which prevents the beads to overlap.

So now of  course the  potential  decays  very rapidly and at  higher  r  values  pretty much the

potential is very small. So come back to this point in a moment, but what we so far have is we

have an elastic energy and we have a non-bonding interaction energy that is represented as a sum

of the two body interactions and will look at all the pairs in the system excluding self-pairs. 

So now the question is like how do I incorporate that energy in to the simulation the way of

doing this is in the Monte Carlo method is the follow describe what the algorithm is and then we

will discuss like why does it work. So Monte Carlo algorithm is the following and I am doing it

for a polymer chain case again for a bead-spring model, but the idea itself is very general and we

applied for many cases. 

So we start with a chain confirmation and to begin with we do not know what the energy of

confirmation is right. So it always starts with random confirmation and which will have certain

positions of the beads. So let us say { ri } indicates the positions of the bead where the {} is a

shortcut for the positions r1 r2 to say rm. 

{r⃗ i }≡ ( r⃗ 1, r⃗2 ,………r⃗m )

So now what we do, so now we do a trial displacement of a randomly chosen bead, so I can pick

any of randomly from 1 to n and I will displace as from r i to sum ri’ will come to like exactly we

do the trial displacement. But let us say for the moments that we have chosen any particular bead

randomly and then we try to displace from ri to ri’. 

r⃗ i→r⃗ i
'

Now that  we comes  now we compute  the  change in  total  energy due  to  the  trial  which  is

something like-

∆U=U ( { r⃗i
' })−U ({r⃗ i })=(U includesbothelastic∧Lennard Jones interaction)



So now we know that we have formed the trial  and we have computed the energy chain to

remove. So now here comes the main Monte Carlo logic that ultimately what do we want, we

want the system to go towards the lowest free energy confirmation so we should accept moves

which are going to lower energies and we should either reject the moves which are going to

higher energy or at least accept with a lower probability because higher energy states are anyway

not the ones that are present in equilibrium. So one of the standard method is we accept or reject

the trial with some probability function so we do accept and reject and then we basically go to

step 2 and continue until properties of interest converse.

So again the idea is that let us say I want to find end to end distance square of chain. I will start

with random configuration I will do a trial displacement I will accept or reject based on the

energy change we will have some probability to accept or reject based on energy change and

then I will continue doing the simulation until whatever property I am interested in converse to a

value that you we will call the equilibrium value of simulation. 

So I will start from this particular point in the next class, thank you.




