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Lattice Model of Solutions - II

Welcome in the last class we have been discussing the lattice model of solutions and we have

already went half way through the derivation of the expression for the Helmholtz free energy

density. So, I will quickly recap that derivation we have been doing and then we will take it

further and complete the derivation that we have been working on. So, just to recap we are

working on the lattice model of solutions where we assume that we have certain number of

solute and solvent molecules in the system, which are constrained to move on a lattice instead of

moving everywhere in 3d space and the and of course both solute and solvent are assumed to

occupy the same volume that is equal to the lattice volume and it is equal to the cell volume in

the lattice.

So, until so far what we have done is we have derived within what is known as the mean field

approximation  that  assumes  that  all  configurations  have  the  same  energy  Ei within  that

approximation I  said that  the  partition  function which generally is  the  sum over  Boltzmann

factors of all configurations i with all configurations with energy Ei-

Z=∑
i

exp (−β Ei )

If I assume the Ei approximately equal to the mean energy I can write this as-

Z=W exp (−β Ei )

Here W=
(N p+N s ) !

N p! N s!
 and also we derived the expression for É as-

É=
1
2

N tot z [ϵ ppϕ
2
+ϵss (1−ϕ )2+2ϵ psϕ (1−ϕ ) ]



So, if you look at this particular term and keeping in mind where ultimately I am interested in the

free energy i.e.-

F=−kBT lnZ

And actually divided by volume of that quantity F by V and in that quantity I only care about the

quadratic terms in  and the reason is because ultimately the behavior of mixing and phaseϕ

separation is dictated by the second derivatives. So, since we, only care of f ' '  for mixing or

phase separation.   We can drop all  the linear terms, that  are  terms containing either   or aϕ

constant that we can drop because any way we are interested in second derivatives okay and if

that is somewhat confusing to you, you can try doing a separate derivation starting from the

terms  we  have  ignored  and  in  the  end  you  will  see  that  those  terms  are  really  having  no

significance  in  the  larger  scheme of  things  because  ultimately we are  going  for  the  second

derivatives of the function f that I will derive. 

So I will collect the terms that contains second power of  that is ϕ ϵppϕ
2

 here. So, this term

will retain so let me write on top what will retain. In the second term there is ϵssϕ
2

and then

we have two more terms which are of lower order they will be ignored and similarly in the last

term we have 2 ϵpsϕ
2

and we also have a 2 ϵpsϕ which is a linear term and we can ignore

that. So, using this idea I can get the expression for É . Now we are left with the terms

ϵppϕ
2
+ϵssϕ

2
−2ϵpsϕ

2

So,  again  if  you  have  any  confusion  you  can  try  retaining  the  linear  terms  and  continue

derivation and then see how does it affect the end results with regard to the mixing and phase

separation behavior that we are going to discuss and what you will find out is that that dropping

the linear term has no consequence in the final results that we are after. 

So, what we get is É  now is-



É=
1
2

N tot zϕ
2 [ϵpp+ϵss−2ϵps ]

Nowwecanwrite∆ϵ=[ϵ pp+ϵss−2ϵps ]

Therefore , É=
1
2

N tot zϕ
2∆ϵ

So, before we go further in derivation let’s pause for a moment and try to see like what does this,

∆ϵ  signify.  So,  we  are  interested  in  the  total  energy of  the  system and  that  energy  is

composed  of  solute-  solute  interactions,  solute  solvent  interactions  and  solvent-  solvent

interactions and so ∆ϵ  in some sort represents the effective interaction that is present in the

system.  Okay, and  now of  course  this  É  does  not  contain  the  entropic  contribution  the

entropy will come separately. This contains in some sort the energetic or enthalpic contributions

but in any case if this É is highly positive that would mean that the system will not like to mix

it will have a tendency to phase separate. On the other hand if É is very negative that would

mean the system will have a tendency to mix. So, this  ∆ϵ  in some sense characterizes the

enthalpic part of energy.

So, let us see let us think that we had the cross section of the system that we started with which

was all solvent molecules and in between we have a solute in the middle and we have we have a

solvent in the middle and then we have two solutes which are right now separated they are not

together and let us say we are thinking about a process where these two molecules will come

together.

So, in that case the new arrangement the two solute molecules come together this will be the new

arrangement. Now let us think of like what is the energy gain or loss that happened as a result of

this particular process where the solute molecules which were a bit farther came together and

formed a new pair.



So, now if we look at this particular arrangement what you will notice is going from left to right 

we formed one additional pair of solute and then since this guy moved here the solvent moved 

here it also formed a new solvent- solvent pairs between these two. You can see like all the other 

pairs between solute and solvent remained unaffected except the ones I am looking at. And then 

you can also see that there were two pairs between solute and solvent which had to be sacrificed 

as a result of this process because the solute molecules came together they formed one contact 

so, we gained energy by one contact off or one pair of solute- solute one pair of solvent- solvent 

minus two pairs of solute and solvent that we had to sacrifice. So, the energy change in this 

process is-

∆ E=(ϵpp+ϵss−2ϵps )=∆ϵ<0

So, if ∆ϵ  is less than 0, I will tend to form more pairs of solute and solute which if you now

think of more number of solute molecules if the system favors the formation of solute-solute

pairs that means system has a tendency to phase separate. Okay. So, this essentially means a

tendency  to  phase  separate.  Now  what  is  interesting  here  is  the  following  that  the  phase

separation or the  ∆ϵ  is not really dictated by the solute- solute interactions alone they are

also dictated by the solvent-solvent interactions. So, what happens for instance if ϵss  is like

very negative and let us say ϵpp  is 0 ϵps is also 0 or close to 0. So, although the solute does

not interact with the solvent and there is no interaction between solutes even then we can have

phase separation because the solvent like itself much larger. 



This is an example we have been giving about the hydrogen bonding in water. If the interaction

between  water  molecules  are  so  large  then  any  solute  which  does  not  offer  an  energetic

contribution in terms of either a solute solvent interaction or a solute- solute interaction will has

to have to phase separate that is of course that is a limiting case because most of them will have

some favorable interaction let us say a hydrogen bond with water and so on.

So, the key lesson from here is when we talk about the interaction between solute molecules and

this is not example of polymer right now this can be any solution. When we take the interaction

between solute  molecules we have to  think in  an effective way in a sense that  how are the

solvent- solvent interactions and solute solvent interactions also affected by the contact of solute

species.

So, in the in the polymer physics language we define a quantity named  χ  that is called a

solvent quality. Right now we are not doing a polymer solution but let us say at least define the

quantity. The quantity is defined also for a binary solution so that we can use it more effectively

and we discuss about polymer solutions. So, we will define a quantity called solvent quality

χ  that is defined as-

χ=
−z∆ E
2kBT

And I can plug that in here and that I will have-

É
kBT

=−N tot χϕ
2

As in any case we do not look at the interaction values by themselves we look at how they

compare to kBT that is a thermal energy only if the energy is very high compared to thermal

energy it can have any effect on the system because otherwise the system is entropy dominated

and favors mixing. 



So, let us keep that aside for a moment and let us go back to the expression of Z that we started

with. So, Z is now-

(−β É )=¿ lnZ=¿ lnW−β É
Z=W exp¿

The Helmholtz free energy is-

F=−kBT lnZ

¿−kBT lnW + É=E−T (kB lnW )

The (k B lnW )  is a definition of Entropy S as given by Boltzmann.

So, Boltzmann really had a very funny life he derived this particular expression and no one

agreed to that this expression of entropy and while he was he was living. Only after he died

people saw value to his work and this expression is engraved on his grave is S = kB ln Ω, Ω= W

which was one of his  most important contributions to today's  thermodynamics.   So,  we just

multiply the Boltzmann constant, so of course he did not call it a Boltzmann constant. He called

it a constant k by the logarithmic of the number of possible states the system can have we get an

expression for the entropy of the system. This is the Boltzmann formula now it is known in the

thermodynamics. 

So, now you can see this expression we have is  É r - TS you can compare to the standard

thermodynamic expression F = U - TS and note very clearly that U is basically my É and TS

appeared as it is that we had there, okay. So although when I first define this quantity I did not

make any particular link to the expression right here but now you can see for yourself that this is

what it is. The É is some sort of internal energy of the system only thing is that it is derived in

a  mean  field  sense  in  the  theory  that  we  have  discussed  where  we  assume  that  all  the

configurations are having the same energy Ei.



So, now we know what W is and we know what É  is. So, let us first look at ln of W. As we

know W is-

W=
(N p+N s ) !

N p! N s!

Therefore,

lnW=ln [ (N p+N s )! ]−ln [ N p ! ]−ln [ N s !]

We will make use of what is known as the Sterling formula we had already used it in the context

of random walk. So, for large N the ln of the factorial can be approximated as N ln N - and there

was one more term there that we are also ignoring that is anyway smaller term compared to this

ok. So, using this formula what we have is

¿ (N p+N s ) ln (N p+N s )−(N p+N s )−N p lnN p+N p−N s ln N s+N s

¿−N p ln
N p

N p+N s

−N s ln( N s

N p+N s
)

And this by definition is  and 1 –  ϕ ϕ and so we get-

lnW ≅−N p ln ϕ−N s ln (1−ϕ )

So, now you can note again that ultimately-

N p=N totϕ∧N s=N tot (1−ϕ )

Therefore,

lnW ≅−N tot [ϕ lnϕ+(1−ϕ ) ln (1−ϕ ) ]

Now I will go back here put the expression of ln W here so it is É - kBT ln W and É  we

have already obtained right here - Ntot χ  square multiplied by kϕ BT. Now I will go back here put

the expression of ln W here so it is-

F=É−TS=É−k BT lnW

¿k BT [−N tot χϕ
2
+N totϕ lnϕ+N tot (1−ϕ ) ln (1−ϕ ) ]



¿N tot kBT [ϕ lnϕ+(1−ϕ ) ln (1−ϕ )− χϕ2 ]

So, now we have expression for F and I have to divide this by volume to get the Helmholtz

density.

F
V

=
F

N tot vc

=
kBT

vc

[ϕ lnϕ+ (1−ϕ ) ln (1−ϕ )− χ ϕ2 ]

So, this is what we have got after we have dropped the linear terms in the energy expression and

now I will  play a small  trick just  for the expression to look slightly nicer. I  will  add some

arbitrary linear term here we will see advantage of this in a moment. But basically we will add a

term  here  which  is  a  linear  term  which  has  no  consequence  in  mixing  behavior  or  phase

separation behavior. The reason why we have added it the first reason is that now the expression

looks somewhat symmetric. It looks like-

F
V

=
k BT

vc

[ϕ ln ϕ+(1−ϕ ) ln (1−ϕ )+ χϕ (1−ϕ ) ]

It is easier to remember but more importantly you can see  there that if I switch  by 1 – , Iϕ ϕ ϕ

do get the same result. So, we will have 1 - ln of 1 - + ln + χ multiply 1 –  multiply ϕ ϕ ϕ ϕ ϕ ϕ

that will be the same result that we have here.

So, if I look at the function plot that will have a symmetry around = 1 by 2 so we have a mirrorϕ

symmetry because if I simply replace  by 1 –  I get the same result. So, it must be symmetricϕ ϕ

with respect to  = ½.  So, the advantage is if I now draw a common tangent sorry for the poorϕ

drawing it will look straight. So, let me draw it again so it looks somewhat more symmetrical, so

you can see if I draw a common tangent now that common tangent will be a horizontal line

which corresponds to f '  = 0 and that simplifies our calculations. So, by adding a linear term

we got this particular advantage in terms of our equation. So, now just to conclude we have been

able to find this expression for the Helmholtz free energy-

f =
kBT

vc

[ϕ lnϕ+ (1−ϕ ) ln (1−ϕ )+ χϕ (1−ϕ ) ]



 This a function of  and T and which is a symmetric expression and using that now I can go onϕ

and find the bimodal, spinodal and critical point and so on and again based on that theory we will

go ahead and try to extend that to the polymer solutions. 

With that I conclude here, thank you.




