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Phase Behavior of Liquid Solutions

Welcome in the last class we have derived the expression for the Helmholtz free energy density

for a liquid solution and we will  take from that expression today and go on to describe the

different phase behavior of a liquid solution and then we can extend that to a polymer solution.

So, just to recall what we have derived using the lattice model of liquid solutions that contains

essentially two species- a solute and a solvent. Both are assumed to have the same volume same

as the lattice cell volume and they are essentially occupying positions on a lattice rather than

moving on a 3 dimensional volume. So, for this case we have derived that the Helmholtz free

energy is given as-

f (ϕ , T )=
k BT

vc

[ϕ lnϕ+(1−ϕ ) ln (1−ϕ )+ χϕ (1−ϕ ) ]

We can identify some terms here and assign some meaning to them and those meanings will then

make some sense and using those meanings we will develop the model for polymer solutions.

So, although when I am assigning this particular meaning to these terms it is not very rigorous

because it is anyway is mean field approximation and we cannot really decouple terms the way I

am proposing it to but it really helps us understand that what kind of contributions come in to the

free energy of solute solvent system in general. 

So, the first term ( ϕ lnϕ ) we can associate to some entropy of solute because  is its volumeϕ

fraction if you go back in the derivation we had a logarithmic of the number of microstates and

from  there  we  have  got  this  particular  term  in  this  expression.  The  second  term

(1−ϕ ) ln (1−ϕ )  for the same reason is the entropy of solvent and the last term χϕ (1−ϕ )

is  the interaction that is apart  from entropy between solute and solvent.  I will  use the word



effective interaction here just to recall you that χ came from an effective energy  ∆ϵ  and

∆ϵ  was something like  ϵpp  +  ϵss - 2 ϵps that is it depends on not only the solute-

solute interactions but also solute solvent, solvent-solvent interaction. So, it is like an effective

interaction between the solute and solvent.

So, with this what we have also discussed is this function happens to be symmetric around  = ½ϕ

and of course this  is what should happen for a phase separation for no phase separation we

should have a behavior like this in terms of χ, if χ is higher than χ c some critical value we will

have phase separation then when χ is less than the critical value we will have a homogeneous

result. So, the larger value of χ refer to the poor solvent conditions the solvent larger value of χ

means poor solvent lower values particularly negative values would mean a good solvent that

will tend to form a homogeneous solution of solute and solvent.

So now let us work on this expression you also said that the advantage of symmetric f is we can

draw  a  common  tangent  and  solve  f ’  =  0  for  the  binodal  rather  than  solving  a  more

complicated equation. So, let us go ahead and look at how the derivatives of this look like and

then we can find the binodal, spinodal and critical point for this system.

So, I will reproduce my function here-

f (ϕ , T )=
k BT

vc

[ϕ lnϕ+(1−ϕ ) ln (1−ϕ )+ χϕ (1−ϕ ) ]

So if I take the first derivative now it becomes-

f '
=

∂ f
∂ϕ

=
k BT

vc

[1+ln ϕ−1−ln (1−ϕ )+ χϕ (1−2ϕ ) ]

Here so the in the first - 1 comes because we take 1 -  multiplied by the derivative of ln that is 1ϕ

by 1 -  with a negative sign, so that is how we got a minus there. And the second term is simplyϕ

we keep ln of 1 -  and take a derivative of 1 -  that is also – 1.ϕ ϕ

So for binodal line or the coexistence curve in this particular case what we have is-



∂ f
∂ϕ

=0 therefore , χb (1−2ϕ )+ ln
ϕ

1−ϕ
=0

so , χ b=( −1
1−2ϕ ) ln( ϕ

1−ϕ )

Now we can go ahead and find the spinodal by simply looking at the second derivative of f. So,

we already have found the first derivative

f '
=

k BT

vc
[ ln ϕ

1−ϕ
+ χ (1−2ϕ )]

f ' '
=

∂2 f
∂ϕ2=

k BT

vc
[ 1
ϕ

+
1

1−ϕ
−2 χ ]

Now if I want to get the expression for the spinodal line and it has to be given by f ' '  = 0,

which  give  me  the  expression  if  I  represent  χs as  the  function  value  of  solvent  quality  for

spinodal line that has to be-

Spinodal line f ' '=0 is χ s=
1
2 ( 1
ϕ

+
1

1−ϕ )
If I want to find the value of the critical point I have to find the third derivative. So, let us go

ahead and try to find the third derivative. So, this has to be-

f ' ' '
=

∂3 f

∂ϕ3=
k BT

vc [−1

ϕ2 +
1

(1−ϕ )2 ]=0at crtical point

If, I solve the equation for the third derivative what I will have is-

1
ϕ2=

1

(1−ϕc)
2=

1−ϕc

ϕc

=±1

So ,1−ϕc=ϕc thereforeϕc=
1
2

Here ϕc is a value of the volume fraction at critical point.



If I want to know the value of χ at the critical point I can put this value of  in the expression forϕ

spinodal or in the expression for binodal because both binodal and spinodal do merge at the

critical point. So, let us say I am computing-

χc= χ s (ϕc)=
1
2

[2+2 ]=2

You can try plugging in also in the earlier equation and you should essentially get the same value

but the problem here is that in this particular case you get a 0 by 0 kind of a term so you have to

take a limit and use lapels rule if you are going by the bimodal. But essentially both of you

should give you the same result that the solvent quality at critical point is equal to 1 by 2. 

So, putting all these ideas together what we then have is the following phase diagram that I will

draw here so we have χ, versus . So, of course for χ less than χϕ c there is no phase separation.

Phase separation only occurs beyond χ= χc this point by the way is ϕc = ½ and this is χc = 2 this

curve is my co-existence curve this I get by solving the equation for the binodal inside this we

will have a curve for the spinodal χs  and both of them of course will merge further at theϕ

critical point. So, just the way we have defined the metastable and unstable regions earlier we

can define here as well sides are metastable region and the middle region is unstable reason and

of course outside the envelope we do not have any phase separation occurring.



So, this we have discussed for liquid solution. Now I will tell you like how can we extend these

ideas to a polymer solution. So, a more rigorous way of doing it is to try to get the actual number

of a polymer configuration on the lattice but it turns out to be somewhat complicated in maths.

So, we will first describe purely into intuitive approach and try to see like how does it captures

the behavior of polymer solution it turns out that even by doing a more rigorous mathematics

will give you the same result. 

So, I want to start with the f that we have derived,

f =
kBT

vc

[ϕ lnϕ+ (1−ϕ ) ln (1−ϕ )+ χϕ (1−ϕ ) ]

and now recall in this particular case of liquid solutions we have identified these three terms as

my solute entropy, solvent entropy and the solute solvent interaction and now we note that if I

now  want  to  put  a  polymer  chain  there  the  first  approximation  that  goes  wrong  is  the

approximation that the solute and solvent are of the same volume of course the approximation



was not very correct even for a simple liquid solution but at least they were of a similar size or

similar order of magnitude of size but if we have a polymer chain present in say water then of

course the size of a polymer chain is nowhere comparable to the size of a water molecule it is of

course the polymers chain is much larger compared to the water molecule. 

Now the other thing that we have to keep in mind is the solute molecules can then go anywhere

in the lattice with relative ease.  In the case of a polymer molecule now they have to  move

together so when all the ingredients or all the beads all the segments of a polymer chain are

moving together compared to the case when the solvent solute molecules the small ones are

moving separately inside a lattice what you can note is that the entropy of a connected polymer

chain where it is formed by connecting this individual segments or beads should be much smaller

compared to the entropy of small molecules.

So, other way to think about it is and I will build on this representation in the next lecture is if for

example you have solute molecules on the lattice and remaining positions are occupied by the by

the solvent molecules they will have much larger entropy compared to the case when these solute

molecules  represent  a  bead  or  a  segment  of  a  polymer  chain.   So,  in  that  case  now these

molecules let us say you had five molecules as here now they have to move together so the

number of configurations is much, much lesser than the number of configurations that we had in

the  case  of  a  liquid  solution  because  now  the  segments  of  a  polymer  chain  cannot  move

anywhere the reason why we have chosen segments as the unit is because we can imagine the

segments at least may have the volume of an order of magnitude similar to a water molecule. We

can always  decompose  a  large  polymer  chain  into  smaller  segments  we can  have  say 1000

segments or 10000 segments. Each of those segments then have a volume similar to a solvent

molecule so in that context instead of putting an entire polymer chain on a given cell I will now

put a segment in a given cell and now we will perform a random walk on a lattice just like we

have discussed in random walk models we have done earlier in the in the course.

So, the main idea is that once the segments are connected and they are moving on a lattice this

happens with a much lower entropy then compared to the case where segments would not have



been connected or rather speaking we can say that the solute where smaller in size or comparable

to water molecules or solvent molecules. So, what it turns out then is if I want to go from this

model a liquid solution model to a polymer solution model all I have to do is simply divide the

first term by N because the polymer entropy is very reduced very less compared to the solvent

entropy where N is the number of segments of polymer chain in fact we can pretty much also

drop the first term because polymer entropy in any case will be very smaller compared to the

entropy of solvent molecules. 

So,  you will  take start  from this point and then discuss the phase behavior in the case of a

polymer solution, thank you.


