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Rouse Model- I

Welcome and in the last class we have been discussing the Brownian motion of a free particle in

an external field and the motivation that I have already given you is that we want to use that to

discuss  the  Brownian  motion  of  polymer  chains.  We required  an  external  field  discussion

because when we look at  the motion of polymer segments the every bead experiences some

spring force due to other neighboring beads and also it experiences the usual solvent drag and

thermal motion of solvent molecules and therefore we have first  discussed that how can we

incorporate an external field into it and the same idea we are going to use to incorporate the

effect of spring force and using that we can build the model of a polymer chain the Brownian

motion mode of a polymer chain that is known as the Rouse model.

So, we will talk about the Rouse model. It is actually simply an extension of or I would say an 

application of the bead spring model that we already have discussed. So, you have beads 

connected by springs and I can represent the positions of beads as say r0, r1, r2 to some say are rn. 

Now they are in a solution and so of course they are surrounded by tiny solvent molecules 

although I say tiny even the beads are not very large themselves because otherwise the Brownian

motion will not really occur or will not be significant in the system.

So, then the spring force between the beads is simply given as the - k the extension of that 

particular spring or we can talk about spring energy that is half k extension squared. So, between 

say two beads or better still we can say but for any bead that is located at rn it experiences to 

spring forces due to the n + 1 bead and n - 1 bead which are located at rn + 1 and rn – 1. So, if I talk 

of the spring energy that is present at rn for bead ‘n’ that is because of the two neighboring beads 

that we have that we can write as-



U spring ( r⃗n )=
1
2
k ( r⃗n+1− r⃗n )

2
+
1
2
k ( r⃗n−rn−1)
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So, using that we can get the force that is-

F⃗ ( r⃗n )=
∂U
∂ r⃗n

=−k ( r⃗n−r⃗n+1 )−k ( r⃗n−r⃗n−1 )

¿k [ r⃗n+1+r⃗ n−1−2r⃗ n ]

So, now we have to be slightly careful for the beads at the end for the beads at the ends only one 

spring is coming r1. So-

U=
1
2
k ( r⃗1−r⃗0 )

F⃗=−k ( r⃗0−r⃗1 )

Similarly for the other end of chain-

F⃗=−k ( r⃗N−r⃗N−1 )

So, now we have found the forces because of the springs all of them are the force only because 

of spring of course we have other forces in the system. So, let us go back to what we derived for 

in one dimension we had-

dx
dt

=
−1
ζ
∂U
∂ X

+vr (t )

Where, vr (t )=
Fr (t )

ζ

⟨vr (t ) ⟩=0



⟨vr (t ) vr (t ' ) ⟩=2Dδ (t−t ' )

So, if I now extend it in the case of a polymer chain I have to write separate equation for each of 

the beads that is to say that we have to write equations for each beads. So,

For bead ‘n’ we have-

d r⃗n
dt

=
+1
ζ
F⃗ rn+vr (t )

For bead n = 1, 2 …n-1 we have-

d r⃗n
dt

=
k
ζ

( r⃗n+1+r⃗ n−1−2 r⃗ n)+vr (t )

For bead n = 0 we have-

d r⃗0

dt
=

−k
ζ

( r⃗0−r⃗1 )+vr (t )

For bead n = N we get-

d r⃗N
dt

=
−k
ζ

(r⃗N−r⃗N−1 )+vr (t )

So, there is one thing we can see here and that is that if I look at the term ( r⃗n+1+ r⃗n−1−2 r⃗n )  this

has the form of the second difference second derivative in the in the finite difference form and

the term ( r⃗0− r⃗1 )  & ( r⃗N− r⃗N−1 )  has a form of first derivative in the finite difference form

that is to say that if N is very large then as I was doing for the case of a polymer chain. I can

approximate the bead spring model as a continuous contour and then instead of talking about the

discrete differences we can talk about derivatives along the contour and second derivative along

the contour and so on.



So, if I now approximate the model as a continuous model which is going from n = 0 to n = N

and ‘r’ being now a function of the contour variable N then in that case-

∂2 r⃗
∂n2= ( r⃗n+1+r⃗n−1−2 r⃗n ) (knownasCentral Difference Approximation)

It has to be divided by ∆n2
 but Delta n = 1 in this case and increase in increments of 1 so we

get this particular relation. And then we can write for the 2 ends as the first derivatives. So we

have-

∂ r⃗
∂n
≅ r⃗1−r⃗0( for n=0 knownas Forward Difference Approximation)

∂ r⃗
∂n
≅ r⃗N−r⃗N−1(for n=N knownas Backward Difference Approximation)

So, now if I go back here the equations I have derived now I can write them in a continuous

notation so this equation becomes-

∂2 r⃗
∂n2= ( r⃗n+1+r⃗n−1−2 r⃗n )

∂r⃗
∂ t

=
k
ζ
∂2 r⃗
∂n2+vr ( t )

And then I can also modify the two equations at the boundaries again using those derivatives-

For n= 0 we have-

∂r 0

∂ t
=
k
ζ
∂ r⃗
∂n|n=0

+vr (t )

And for bead n= N it is-

∂r⃗N
∂ t

=−
k
ζ
∂ r⃗
∂n|n=N+vr (t )

So we can always do this but now you see that this problem because somewhat complicated

because if this is my partial differential equation and these are my boundary conditions. Then



these boundary conditions are in somewhat complicated form and it is not really easy to solve

because boundary condition itself our ordinary differential equation. So, we will do a trick here

and the trick is that if I look at these two ends they are essentially free ends and since they are

free there is like nothing before them so the any gradient that is present there should vanish at the

free end that we have that is the nothing before this nothing after that. If it was like clamped on

say two walls then this is no longer true then the gradient will be present at the boundaries but in

this case the gradients has to vanish at this at the end because it is a free end. So, what we

assume is-

∂ r⃗
∂n

=0whenn=0∧N

This is because the ends are ands are free there is no polymer chain if I go further from n = 0,

nothing there at n = -1. Similarly nothing there for n = n + 1. So, there the gradient must has to

vanish.

So, now I have the full statement of the Rouse model in continuous approximation and that is we

have a partial differential equation (PDE) for r and t where what we are now solving is for the

positions as a function of n and t and being a contour variable running for from n = 0 to n =N and

the PDE we have something like this-

PDE r⃗ (n ,t ) :
∂ r⃗
∂ t

=
k
ζ
∂2 r⃗
∂ n2+vr (n , t )

So, of course if I look closely then the random force was of course different for different beads in

the system and therefore the random force should also be a function of ‘n’ because since we have

replaced the r ends by a continuous variable r, control function r which is a function of n and t

the random force is also differ for every bead. So, they also have to be a function along the

contour. So, they also have to be changing with n and t and therefore he will do not clearly stated

earlier this has to be vr as a function of n and t. So, for every value of n we have to find a new

random function  or  it  is  a  continuous  random function  that  would  change its  value  as  n  is

changing.



With Boundary Condition- 
∂ r⃗
∂n

=0at n=0,N

The above two equations become the statement of Rouse Model.

Now it  turns  out  that  this  is  a  second order  partial  differential  equation and it  is  somewhat

difficult  to  solve.  So,  in  the  next  class  what  I  would discuss  is  we can  write  this  equation

equivalently in terms of a series of ordinary differential equations and those ordinary differential

equations are easier to solve and then we can get solution in terms of what is known as Rouse

modes which I will elaborate in the next lecture. So, they are we are going towards what is

known as a normalized coordinate or a Rouse mode and you want to find solution in terms of

them and that’s where we will take the discussion in the next class.  So, I want to stop here, thank

you.


