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Welcome in the last class we have been discussing the Rouse model to discuss the motion of a

polymer chain and we have started deriving the equation, first we wrote in discrete terms and

then we wrote a continuous were some of it that is true for large number of segments and today

we will go on solving the equation into what we know as the Rouse Modes.

So just to recap, the model we have been trying to build is the continuous analog of the bead

spring model where we have a contour variable ‘n’ going from 0 to N and the position at any

point is given as ‘r’ as a function of n and t and at that point we are having a random force Fr as a

function of n and t. If I divide by ζ I call it a random velocity v r this was the Rouse model and the

equation was for r and t we are solving a partial differential equation. It is-

r⃗ (n ,t )
∂ r⃗
∂ t

=
k
ζ
∂2 r
∂n2 +

F⃗ r (n , t )

ζ

Where we have the boundary conditions at the two ends that the gradients of ‘r’ vanish at n = 0

and N.

BC :
∂ r⃗
∂n

=0 at n=0∨N

So, what we have is a partial differential equation and it is of course difficult to solve when we

compare that to an ordinary differential equation. So, the method we adopt is we try to write this

partial differential equation into a set of ordinary differential equations which are easier to solve

and then I write the ordinary differential equations that we get as the Rouse Modes and using that

we can get the solution of the Rouse Model. So, the goal here is to write equations in the form of

ordinary differential equations like this because we know how to solve these equations and that is



what this is what we have got for the Brownian motion of a free particle just like one is sphere in

a solvent. So we write as-

ζ p
d X⃗ p

dt
=−k p X⃗ p+f⃗ p

And to do that of course you cannot work with just  one ODE because the PDE is a higher

dimensional equation you will have a series of ordinary differential equation that represents that.

So, this equation that I have written is for P = 0, 1, 2 and so on.  So, what I do is known as a

linear transformation where the variable I have defined the Xp which is now a function of ‘t’

alone is given as the integration over r and t multiplied by a function ϕpn that I would refer to as a

basis function and so far I am not saying what the basis function is but the basis function must,

must satisfy this particular relation for Xp t where Xp is a solution of the equation I have just

written let us call that *.

Linear Transformation : X⃗ p (t )=∫
0

N

dnϕ pn r⃗ (n , t )

Here ϕ pn  is a basis function.

So, now let us look at the equation that we have written-

ζ p
d X⃗ p

dt
=−k p X⃗ p+f⃗ p

So, now I have constants ζp that is a drag coefficient but it is changing for different values of P so

we will assign a meaning to it in a moment. Similarly we have Kp analogous of a spring constant

but defined for an ODE for a value of p. And similarly Fp  is like a random force that is defined

for the value of p and of course that is changing as I change the values of p we do not know what

the values are yet we will derive the values that would give any meaning to this equation.

So, now since we have defined Xp as integral over n of ϕpn multiplied by r (n, t). We have-

X⃗ p=∫
0

N

dnϕ pn r⃗ (n , t )



If I plug that in the in the equation above what we have is-

ζ p
d X⃗ p

dt
=ζ p∫

0

N

dnϕ pn r⃗ (n , t )

Of course I can move the time integration inside the integral because the integral is over n not

time and  is assumed to be not a function of time it is only a function of p and N. So, we canϕ

write this as-

ζ p
d X⃗ p

dt
=ζ p∫

0

N

dnϕ pn

∂ r⃗ (n , t )

∂ t

Here,  we have to be slightly careful here because outside its total derivative d by dt when it is

moved inside then since r is a function of both N and t. I have moved to partial derivative. But

this we already know from the original equation that 
∂r (n , t )

∂ t
=
k
ζ
∂2 r

∂n2+
F r (t )

ζ

So, now this is equal to-

ζ p
d X⃗ p

dt
=ζ p∫

0

N

dnϕ pn
k
ζ
∂2 r⃗
∂ n2+ζ p∫

0

N

dnϕ pn

F⃗ r (t )

ζ

So, we will first do the integration by part over the first term and then we worry about the second

term here. So, let us look at the first term which contains an integral like this of course it has

some pre factors we will worry about that later. So, we use the integration by parts and the rule is

if we have a product of two functions integrated over the variable x then-

∫ f ( x )g (x )dx=f (x )∫ g (x )dx−∫ f ' ( x )g ( x )dxdx

So this is the rule I am going to use here where and set our variables as-

f ( x )=ϕpn ;g ( x )=
∂2 r⃗
∂n2∧x=n



Now –

∫ϕpn
∂2 r⃗
∂ n2 dn=(ϕ pn

∂r⃗
∂n )

0

N

−∫
∂ϕ pn

∂n
∂ r⃗
∂n

dn

We will drop the first term as we know-

∂ r⃗
∂n

=0usingboundary conditions

So we get-

¿−( ∂ϕ pn

∂n
r⃗)

0

N

+∫
∂2ϕ pn

∂n2 r⃗ dn

So, once we have derived the equation for one term there so I  want to put it  back into the

expression that I had earlier-

ζ p
d X⃗
dt

=
ζ p

ζ [∫
0

N

k ϕpn
∂2 r⃗

∂ n2
dn+∫

0

N

F⃗r (n , t )ϕpndn]
¿
ζ p
ζ [−(k ∂ϕpn

∂n
r⃗ )

0

N

+∫
0

N

k
∂2ϕpn

∂n2
r⃗ dn+∫

0

N

F⃗ r (n ,t )ϕ pndn]
¿−k p X⃗ p+ f⃗ p=−k p∫

0

N

dnϕ pn r⃗+ f⃗ p

Now there can be many possible solutions to this particular equation we will look at a particular

solution because any of these solutions that satisfy the ordinary differential equation that I have

just written will suffice for us it need not be a unique solution. It can be any solution because we

are transforming the variable to get a linear ODE and there may not be a unique solution there

can be multiple ways to linearize the PDE that we have. So, one possible way is we look at the

term by term in the two expressions I have written. So, first of all I look at the last term in the

two expressions and we get-

f⃗ p=
ζ p
ζ
∫
0

N

dnϕpn F⃗ r (n , t )



This is my first equation.

Now I look at the other terms and I get- 

ζ p
ζ
k
∂2ϕ pn

∂n2 =−k pϕpn

So, this is one way of getting a solution for what we have written and again I want to emphasize

that this is not a unique solution there may be other ways of solving it but this one will suffice

because this already transformed the PDE to the ODE we want. We need not care about a unique

solution we can get any solution that will work because any transformation is will work for us.

So, if I look at the above equation I can also write as something like this-

∂2ϕpn

∂n
=

−
k p
k
ζ p
ζ

Now you can see we have a partial differential equation in terms of the basis function that I am

trying to solve for and we know the boundary condition that basis function also satisfies so using

that we will solve for the basis function and using that basis function I can define the solution Xp

t  this is what we are going to do. So, let us get started so we have an equation of the form

because all the constants that we have are assumed to be positive that is an assumption again-

∂2ϕpn

∂n2 =−A2ϕpn

Here A=
( k pk )
( ζ pζ )

The general solution of this will be



An
(¿)

ϕ pn=α cos (An)+β sin ¿

Where α and β are arbitrary constants you can verify this by doing the first derivative and the

second derivative which is-

∂ϕpn

∂n
=−αA sin(An)+βA cos(An)

∂2ϕpn

∂n2 =−α A2 cos (An )−β A2 sin (An )=−A2ϕpn

So, if I look at this general solution now and if I now use the first boundary condition at n = 0 we

can put n = 0 here the sine term is anyway 0 the cos term will give me-

An
(¿)

ϕ pn=α cos (An)+β sin ¿

∂ϕpn

∂n
=0at n=0 then βA=0 so A=0whichis a trivial solution

Because this will give me the kp values to be 0. Β A = 0 you can see A = 0 will be a trivial

solution because this will give me the kp values to be 0. So, we go for β= 0 then I will use the

second condition at n = N, β is already gone we have from here αA sin AN = 0 of course A is not

equal to 0 because it is a trivial solution, if we set A = 0 again we get a trivial solution. So, α= 0

is trivial.  So, we set sin AN = 0 which gives me-

sin (AN )=0 so AN=pπ

Therefore, 

A=
pπ
N

Where p is again an integer going from 0, 1, 2 and so on. 



So,  using that  now I have the solution for  this  equation that  means now we have the basis

function ϕpn and the basis function in our case is this-

ϕ pn=α cos ( pπnN )
Now the only issue is we do not know what α is now for any value of α we will have a linear

transformation. So, it is up to us which α value we are going to choose. So, we will choose-

α=
1
N

Therefore,

ϕ pn=
1
N

cos ( pπnN )
The reason why we have taken alpha is equal to 1 by N is because if you recall-

X⃗ p=∫
0

N

dnϕ pn r⃗

This dn is of the order of N, so if I multiply this with the quantity that is of the order of 1 by N

the net quantity will be of the order of unity that is one justification why we are taking alpha = 1

by N because that gives me a quantity of the order of unity in the in the equation I have written

for Xp.

So, just to conclude, so, we have now obtained the basis function ϕpn using that now I can get the

solutions Xp which will then be used to solve the ordinary differential equations and by solution

of those equations we can get the solution of the Rouse Model. 

So, we continue from this point in the next lecture, thank you.




