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Welcome in the last lecture we have been discussing the solution of Rouse Model and we have

almost  written  the  partial  differential  equation  that  we had in  terms  of  ordinary differential

equation. So, today I will take it further and talk about the physical significance of the solutions

that  we have written for the Xp that  is  my variables  that  appear  in  the ordinary differential

equation.

So, essentially what we have done is for the discrete to continuous for the continuous analogue 

of the bead spring model I am not writing the partial differential equation but the 1 dimensional 

analogue that we have been working on where we have obtained the value of ζ. 

ζ p

d X⃗ p

dt
=−k p X⃗ p+f⃗ p

ζ 0=Nζ∧ζ p=2Nζ

It is different for p = 0 and everywhere else and then we can also get the expression for kp using 

the expression I have derived this is equal to the following-

k p=
2 k p2π2

N

Now you can note here that we do not write a separate equation for p = 0 because if I put p = 0 

here it is anyway 0 so the pre factors does not really matter for p = 0 case. So, now you can recall

that for an ideal chain the k value was derived to be-

ideal chain k=
3kB T

b2



And therefore for ideal chain we can write kp as-

k p=
6 kB T p2 π2

N

So, let us first look at what advantage we get from here, the one clear thing you can see from 

here if you recall the Brownian motion of a free particle the equation we had something like this-

Brownianmotionof free particle :
d X⃗
dt

=
−k
ζ

X⃗+ F⃗ r

And now the equation we have written of course this is for different values of p looks very 

similar in form to what we had for the Brownian equation further for the Brownian motion of a 

free particle okay. So, therefore all the kind of math we did for the displacement correlations 

functions and so on for the free particle case will apply in this case for particular values of p. So, 

in the in the free particle case there is only one x but now we have multiple values x0, x1, x2 they 

correspond to different values of p. But for each of those p values the mathematical form is 

similar to what we had for the Brownian motion of free particle.

So, what essentially it means if I start thinking at an intuitive level is we are writing the model of

a polymer chain as many equations for different p values where each of the p values give rise to

an equation that is similar to the free particle case that is the first thing that we see here. Let us

say if I am interested in the correlation functions for the displacements. Now I can talk about

displacements in different values of Xp for different p that is x0, x1 and so on.

Let us say for example for p = 0 what we can get as the auto-correlation would be equal to-

⟨ ( X⃗0 (t )− X⃗0 (0 )α) ( X⃗0 (t )− X⃗0 (0 ) )β ⟩=ζ αβ

2kBT

ζ 0

T



Where ζ 0  is of course and Nζ  as you can see the 
2k B T

ζ  was like a diffusion coefficient

in that case. Now we have a ζ 0 appearing there for a particular p value. So, for every p value 

we can think of a diffusion coefficient for that particular p value. In general for p higher than 0 

we can say or also q higher than 0 we can write this as-

⟨ X⃗ pα (t ) X⃗qβ (0 ) ⟩=δ pq δαβ

k BT
k p

e
−( t

τp )

Where τ p=
ζ p

k p

=
τ1
p2 ∧τ1=

ζ N2 b2

3π2 k BT
( for the caseof ideal chain ) .

That is to say if I look at the displacement correlation functions in terms of these solutions Xp

that I will refer to them as Rouse modes. These correlations decay exponentially with the time

scale  τ p  and that time scale basically decreases as I increase the values of p okay. So, the

decay is faster if I go to larger values of p and decay is slower if I go to lower values of p that is

the first thing that we see.

The next thing is what is more important and that is that once we have got these values of Xp so I

have transformed my ‘r’ that was representing the positions along the contour to Xp I can do

vice-versa so I can start from XP and get the ‘r’ that is called the inverse transform. I can write

this as-

InverseTransform : r⃗ (n , t )= X⃗0+2∑
p=1

∞

X⃗ p cos( pπn
N )

So, using the value of Xp, I can get the values of r and you can also note that Xp basically go

from 1 to infinity that means we can have infinite Rouse modes that are present in the system ok.

So, let us see why this is the case, so we can prove we can prove this statement for inverse

transform by using the definition of the Xp that we started with after derivation of the basis

function we had got something like this right. The proof is-



X⃗ p=∫
0

N

dn
1
N

cos( pπn
N ) r⃗ ( n ,t )

¿∫
0

N

dn
1
N

cos( pπn
N )[ X⃗0+2∑

q=1

∞

cos (qπn
N )]

¿
1
N
∫
0

N

dncos( pπn
N ) X⃗0+

2
N
∑
q=1

∞

∫
0

N

dncos ( pπn
N )cos ( qπn

N ) X⃗q

Now we will replace using the rule that we have discussed earlier cause cos(A + B) + cos (A – B)

by 2- 

cos( pπn
N )cos ( qπn

N )= 1
2 [cos ( p+q ) πn

N
+cos

( p−q ) πn
N ]

Now if I integrate I get-

1
N

X⃗0 sin
( pπn

N )
pπ
N

⌋

¿
¿
¿¿

N for p = 0 is 0 otherwise we have-

¿ X⃗0 δ p 0+
1
N [sin ( ( p+q ) πn

N )
( ( p+q ) π

N )
+sin

( ( p−q ) πn
N )

( ( p−q ) π
N ) ] X⃗q

So, of course both of these are  only nonzero when p = q and as we have done earlier  this

becomes-

¿ X0 δ p 0+
1
N
∑
q=1

∞

(δ p0+1 ) N δ pq



Since we start from q = 1 and we have a δpq inside, so δp0 is not a possibility because we have

taken that separately. So, what we have here is-

¿ X⃗0 δ p 0+∑
q=1

∞

X⃗q δ pq=X⃗ p

So, this is  how we have shown that the inverse transform follows the relation that we have

provided here by using the definition of the transform itself. So, now we know that if I know the

Xp I can get r and if I know r I can get Xp so it is perfectly the kind of transformation I wanted.

So, I only need to solve for Xp and I can get the r values and I can get the chain configuration if I

am solving the Rouse modes the solutions Xp ,the only thing is that it is infinite such solutions

that we have to solve for. 

Now what I am going to demonstrate is we do not really need to solve for this infinite solutions.

Each of these individual solutions also have a meaning embedded in them and that we can see if

I if we do certain examples try to get some quantifiers of polymer chain and see how does that

relate to the Rouse modes that we have described.

So, let us say for example I am interested in the center of mass, if I am interesting center of mass

then it is of course given by simply the integration of r over N the whole contour and divided by

N that gives me the center of mass i.e.

Center of Mass : r⃗ cm (t )=
1
N
∫
0

N

dnr⃗ (n , t )

And then if I simply plug in the definition of inverse transform we get the following-

¿
1
N
∫
0

N

dn[ X⃗0+2∑
p=1

∞

X⃗ p cos ( pπn
N )]

¿ X⃗0+
2
N
∑
p=1

∞

X⃗ p sin
( pπn

N )
( pπ

N )



The first term here simply gives me X0 because integration over N gives me capital N it cancels

out. The second term here gives me the integration which is anyway going to be 0 because we

have started from p not equal to 0 we start from p = 1. So, what I get from here is my center of

mass simply is the first or 0th-

r⃗cm (t )=X⃗0

Therefore, the center of mass refers to the 0th Rouse mode of the system. So, without even

solving for all the Rouse modes even if I get the 0th Rouse mode that already has a meaning to it,

it tells me about the center of mass of the polymer chain. So, now we can think about other

quantifiers and see like what they become. Let us say for example I am interested in the diffusion

coefficient. To get the diffusion coefficient we want to start with the mean square displacement. 

The mean square displacement we can define for the entire chain more specifically maybe we

want to define for the center of mass. If I want to define the mean square displacement of center

of mass, it already captures the net diffusion of polymer chain. So, let us say for example if my

polymer chain goes from one point to  other then I  can characterize the overall  diffusion by

looking at the center of mass here over two points.

The net motion of center of mass characterize the overall diffusion of the polymer chain. Note

that I am not putting the center of mass on the polymer chain itself because by definition the

center of mass can be anywhere on the chain it need not it any anywhere in this space where the

polymer chain is present it need not lie on the polymer chain or any particular segment because

of the relation that we are using to get the center of mass it does not require that we have to place

the center of mass on the polymer chain itself. I can define this as-

⟨ ( r⃗cm ( t )−r⃗cm (0 ) )
2 ⟩= ∑

α=x , y ,z
⟨ X0α (t )−X0α (0 ) ⟩

¿3 ⋅
2k BT

Nζ
t=

6k BT

Nζ
t

And if I compare to the relation that we derived for 3 dimensions Einstein relation in 3D what we

can get is for a polymer chain the net diffusion is given as simply-

⟨ r2 ⟩=6 Dt



D=
k BT

Nζ
∨D∝ 1

N

That is if I increase the number of segments the diffusivity decreases. Although it is qualitatively

true,  it  turns  out  that  the  scaling  is  not  perfectly  correct  the  scaling  changes  with  different

solvents. And scaling changes also due to factors that I called hydrodynamic interactions that we

discuss later and for that we have a model called Jim model but nonetheless it already captures

the basic feature that the diffusion coefficient will decrease if I increase the number of segments

on the polymer chain which is indeed true and the longer polymer chains have lesser diffusivity

because they will diffuse more slowly in the system. So, now let us look at some other quantity

that we are used to.

Let us say for example I am interested in the end to end distance. So, the end to end distance is

for our polymer chain going from n = 0 to n = N is simply-

R⃗e (t )=r⃗ ( N , t )−r⃗ ( 0,t )

And as we know

r⃗ (n ,t )= X⃗0+2∑
p=1

∞

X⃗ p cos( pπn
N )

So we get-

R⃗e (t )=2∑
p=1

∞

X⃗ p [cos ( pπ )−1 ]

The term cos ( pπ )=(−1 )p  so if you notice here all the even terms will cancel out because for

even terms we have cos p  - 1 = 0 only the old terms will remain. So, this is going to be-ℼ

¿2 ∑
p :odd

X⃗ p (−2 )=−4 ∑
p:odd

X⃗ p

That gives me the end to end distance vector. 

If I am interested in the correlation time correlation of Re ultimately I am interested in-



⟨ R⃗e (t ) R⃗e (0 ) ⟩=16 ∑
p :odd

⟨ X⃗ p (t ) X⃗ p (0 ) ⟩

And  this  we  have  already  established  will  decay  exponentially  and  then  it  is  going  to  be

something like-

¿16 ∑
p :odd

∞ 3 k BT

k p

e
−t
τ p

Here τ p=
τ1

p2

So, now you can notice here that only the first term will be the one that will be dominant because

the exponential actually decreases as we go to progressively higher values of p. Let us say for

example we go for p = 3 then we have exponential of -9 times what we had in the case of p = 1,

so, exponential decay very fast for higher values of p. So, p = 1 is the dominant term that we will

see in here. So p = 1 is dominant what this means is the first Rouse mode essentially captures the

time correlation of Re.

So, in summary what we have shown so far is we have assigned two meaning to the Rouse

modes 0th Rouse mode correspond to the center of mass of a polymer chain. 0th Rouse mode also

gives us the net diffusion coefficient of a polymer chain. The first Rouse mode tells me about the

time correlation of the end to end displacement and we take the idea further and discuss on the

physical significance of Rouse modes in a bit more detail in the next lecture. 

With that I conclude here, thank you.




