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Hello everyone, so in this lecture we will review the continuum mechanics part that we have

been doing and then we will take it further and try to analyze the behavior of rubber that is a

polymer network. So, just to recall what we have been doing in the last class is we are talking

about continuum mechanics and we defined what is known as the stress tensor and the way we

have defined it is we have defined a material point P that is fixed to the material and then a

volume around this material point and then I talked about a small area on that volume so the 3

dimensional volume around material  point and we talked about a surface ds on that volume

which has an outward normal n and there is a force that is acting on this small surface given by a

stress tensor sigma dotted with the normal vector multiplied by the area. 

d F⃗= σ́ ⋅ n̂ dS

So, now if I take these ideas further before just to write the same thing in Einstein's notation this 

would be something like this-

d Fα=σαβ nβ dS

If I want to take this idea further and try to find the total force acting on the volume around the

material point the control volumes are to speak, the total force can be found by integrating the

dF’s and this will be given by something like this –

Fα=∫ σαβ nβ dS

So, now we will make use of what is known as the divergence theorem you probably have done

this in math courses that is for any function f of (r) I can write the integration over the volume of



its derivative as equal to the integration over the surface of F that is dotted with the n or if I want

to work in Einstein notation I will use an r alpha here and an n alpha here. So, if we use this idea

in the equation for Fα what I do get is a derivative of the stress tensor with respect to r of β. It is –

DivergenceTheoremf (r ) :∫ d r⃗
∂ f
∂ rα

=∫ dS f nα

So, now going back to the equation of motion that we discussed in  the last  lecture we had

something that is counterpart of mass times acceleration the density multiplied by volume is the

mass  and  the  acceleration  can  be  written  as  the  current  position  as  a  function  of  previous

position, the second derivative of that and this must be equal to the forces acting on this which

can be the forces due to the stress that we talked about and the force is due to the gravity or other

body forces which are present in the system. So, this can be for example a gravity force, now we

will use divergence theorem so this becomes an integration over the volume. So, the integration

over the volume of the derivative is the integration over the surface of the stress tensor multiplied

by the normal vector. So, I will use the volume integration here, so we get and then we have

certain body forces acting on the system – 

ρ V
∂2 ~rα ( r0, t )

∂ t 2 =∫d r⃗
∂σαβ

∂r β

+ ρV gα

So, if I look at this we have three terms the first term ( ρ V
∂2 ~rα ( r0, t )

∂ t 2  ) is the term that defines

the inertia of the system. The second term defines ( ∫d r⃗
∂σ αβ

∂rβ
) the force due to stress and the

last term ( ρ V gα ) defines the body forces. 

It turns out that in most cases of interest in polymer physics the inertia and body forces are not so

dominant. So, if we neglect inertia and body forces other way of saying that is the inertia and

body forces are smaller in comparison to the forces because of a stress then we can drop both



terms and then if I use the idea that the volume is small over which I am doing this integration

what I can write is –

∂σαβ

∂r β

=0

This is what is known as the condition of mechanical equilibrium that is only true when the

inertia and body forces are small in comparison to the forces because of stress.

Now the analysis  so far is completely general in nature we have not specified what kind of

material it is and the specification of the kind of material would come in the definition of my

stress tensor σ we have not said what the stress tensor is. It turns out that we can write the stress

tensor in terms of the history of deformation of material and that dependence would be different

for example for a liquid solid polymer and so on. So, what these dependencies are called is

constitutive  laws  or  constitutive  relations  they  relate  the  stress  tensor  with  the  history  of

deformation.

Now the question is how do we quantify the history of deformation so, there are two ways of

doing it so the ways to describe history of deformation. The first one is known as deformation

gradient tensor then you may have used this kind of a tensor in a solid mechanics course if you

have done that. This tensor E is a function of the current time t and a previous time t0 and given

by Eαβ that is a function of t and t0 as the derivative of rα with the initial position r0β.

DeformationGradient Tensor , É ( t , t0 ) :Eαβ ( t , t0 )=
∂rα

∂ r0β

So,  let  us  say  for  example  we  have  a  deformation  going  from r0  to  r  which  in  Cartesian

coordinates is x0, y0 and z0 not going to x, y and z then E would be a tensor which will have

components-



É=[
E xx Exy E xz

E yx Eyy E yz

E zx E zy E zz
]=[

∂ x
∂ x0

∂ x
∂ y0

∂x
∂ z0

∂ y
∂ x0

∂ y
∂ y0

∂ y
∂ z0

∂ z
∂ x0

∂ z
∂ y0

∂ z
∂ z0

]
So, the alternate way to look at the history of deformation is known as the velocity gradient

tensor which is written as sum Kappa that is only a function of time in the current time not the

previous time and this is written as-

Velocity Gradient Tensor ( ḱ (t ) ) :k αβ (t )=
∂ vα

∂rβ

So, it turns out that Kappa tensor become useful for liquids and E tensor becomes useful for

solids  especially  elastic  solids  and  as  we  have  discussed  the  polymeric  systems  can  be  in

between the liquid and a solid so this may in turn affect depend on both E and Kappa. We will

talk about these details later but for time being keep in mind that there are two ways to quantify

one is my deformation gradient tensor that depends on the position at a previous time and the

current position and a velocity gradient and tensor that depends on the velocity at correct current

point and the position at the current point.

These two tensors can be related the E and Kappa. So, if I do a derivative of Eαβwhat I do get is-

∂
∂t

Eαβ ( t , t0 )=
∂
∂ t

∂ rα

∂r0 β

=
∂
∂t

∂ rα

∂rμ

∂rμ

∂r 0β

It means that we will sum over all possible values of μ that is 1, 2, 3 in Cartesian coordinates in 3

dimensions. So, if I look at the first term I can move the derivative with respect to time inside

and then we have velocity vα coming in there now the first part of it is by definition-

¿
∂vα

∂r μ

∂r μ

∂r0 β

Therefore,



∂
∂t

Eαβ ( t , t0 )=k αμ (t ) Eμβ (t ,t 0 )

Although we have defined two different measures they are not unrelated they can be related by

this equation. So, now I want to take this idea further on how is it ultimately useful because we

have  reduced  the  problem  of  working  in  terms  of  stress  tensor  to  working  in  terms  of

deformations but we have not yet said how will we relate the stress tensor to the deformations

and the answer here is looking at the free energies of the kind that we have discussed while doing

the  lattice  models  of  polymers.  So,  when  we  are  doing  the  lattice  model  we  talked  about

something like a free energy density of polymer solutions Helmholtz free energy density f ( )ϕ

and we described the polymer behavior as a function of that free energy density. So, if we can try

to connect these deformations or these stresses with that free energy we have now a way to

derive the constitutive equation. So, of course the free energies would be different for different

types of material. They may depend on the deformation tensor E on Kappa or may be both of

them and that  is  how they will  basically give  me the  dependence  of  a  stress  tensor  on the

deformation and that is the way to derive the constitutive laws that we are interested in. 

So, we will use the basic idea that if a system is in equilibrium then if I do a slight hypothetical

change near the equilibrium that work done for that change would be equal to the change in free

energy we can say that only near the equilibrium because the whole idea of free energy will not

become relevant  when we go very far  from equilibrium. We can talk  about  thermodynamic

measures only near the equilibrium. So, if we talk in a state of mechanical equilibrium and if we

do a small deformation in that case we can say that the work done would be same as the change

in free energy so we first try to find the work done and then we will relate to a change in free

energy and then finally we will apply to the case of a polymer network.

So, if I look at the work done to cause a deformation and that is near equilibrium, it is a small

deformation near equilibrium. So, let us say I am at ‘r’ instead of equilibrium and from ‘r’ I

deform to r + δu that is a function of r and if I want to find the work done for this deformation



that would be simply the force that we have obtained multiplied by the deformation that I am

giving  to  the  system.   It  is  a  force  multiplied  by deformation  again  the  force  is  calculated

assuming that we have a state of mechanical equilibrium and that is why I am emphasizing the

fact that we must be very near to the equilibrium. 

takingdefromation¿ r⃗ → r⃗+δ u⃗ ( r⃗ )

So it is:

δW=∫ dSσαβ nβ δ uα

So, we are also assuming one more thing here that gravity and other body forces are negligible.

So, again you can use the divergence theorem I can replace the surface integration with a volume

integration and I would have something of this sort-

δW=∫ d r⃗
∂

∂r β
(σαβ δ uα )

You can see β and α both are repeated now both of them become dummy index which has to be

the case because work done is a scalar quantity it does not have the dimensions. So, now if I

apply the integration by parts here what I do get is this-

¿∫ d r⃗ [δ uα

∂ σ αβ

∂ rβ

+σαβ

∂δ uα

∂r β
]

Now you can notice that  the  first  term would be 0 because of  the  condition  of  mechanical

equilibrium that we had discussed earlier and the second term can be related to what is known as

a strain tensor. So, it is the derivative of the small deformation that is being applied with respect

to the previous position. So, the second term is strain tensor ( δ Eαβ ) we have put a δ there just

to emphasize that it is a small deformation and then again for the case of small volume around

the material point we can drop the integration or if the deformation is uniform we can simply

multiply that with the volume And essentially what we do get is something like this-

δW=V σ αβ δ Eαβ



So if I want to relate now the work done to the change in free energy, what we do get is a change

in free energy per unit volume as-

δf =σ αβ δ Eαβ

When we are when we are doing this we have made basically a couple of assumptions and that

become relevant for the materials one is that we assume that the body force is negligible that

may not be true for all class of materials and second we are looking at small deformations around

the equilibrium that again will not be true for many classes of materials. So, this is very limited

relation that applies to materials  such as the polymer networks we will  discuss this  is  not a

general relation so, as to speak. 

So, now if I am now looking at say a polymer network or rubber is a polymer network, we are

doing the case when there is no solvent in there when there is a solvent it is called a polymer gel

that will have additional contributions to free energy but in this case it is a solid polymer network

the rubber that you know. So, in that case it turns out that the free energy density is a function of

E alone the free energy is a function of only the deformation gradient tensor and we will discuss

why this is the case we will derive it formally later. But if we take for granted this relation that f

is a function of E alone then we can write as-

f ≡ f ( É )

δf =
∂ f ( É )
∂ Eαβ

δ Eαβ

So,  now  I  will  I  have  two  relations  for  δf  this  one  ( σαβ δ Eαβ )  and  another  one  is  (

∂ f ( É )
∂ Eαβ

δ Eαβ ) and I can compare these two to get the relation that we are interested in that is

the definition of the stress tensor. So, you can see here that although both of them contains α and

β both of them are dummy indices in the in the two cases. So, we have to be somewhat careful

while we are equating these two these two expressions. So, this is equal to-



δf =
∂ f ( É )
∂ Eαβ

δ Eαμ Eμβ

And how do we get this is ultimately-

δ Eαβ=δ( ∂ rα

∂r0β
)=( ∂ rα

∂ rμ

∂rμ
∂ r0 β

)=δ Eαμ Eμβ

The first  term will  give me the strain tensor and second term will  give me the deformation

gradient tensor. So, now I can compare these two because both of them now contain the strain

tensor epsilon okay. So, the only problem here is this has an index of α μ and this one has an

index of μ α and this one here has an index of α β but keep in mind that both of them are

essentially dummy indices. So, there is no harm if I interchange μ with β, so if I interchange μ

and β what we do get is-

( ∂ f ( É )
∂ Eαβ

)=δϵαβ Eβμ

σαβ=Eβμ( ∂ f ( É )
∂ Eα μ

)
Now the problem with this particular relation is already although we already relate the stress

tensor with the deformation it turns out that it does not take care of the fact that the material is

incompressible so if the rubber is incompressible that is there is no change in the density of the

material on deformation. So, in that case we have to be somewhat careful here and we have to

add an additional term and the reason for that term is the system will respond to external forces-

σαβ=Eβμ( ∂ f ( É )
∂ Eα μ

)−p δαβ

So, if I say apply an external force on rubber it will deform and that deformation is not being

captured by the change in the free energy. So, for incompressible materials we have to add an

isotropic term where P is the pressure. So, as a rule the constitutive relations we derive using

thermodynamic ideas will  not really have incompressibility. Incompressibility is  enforced by



adding a term that is isotropic in nature that will give you a diagonal tensor in the stress matrix

and that is will that will that will have terms containing the negative of pressure that is present in

the system. 

So, with this idea I now have the definition of the stress tensor for a polymer network. So, in the

next lecture we will first discuss that what is the motivation for saying that free energy is a

function of deformation gradient tensor and then using that we will come back to this relation

and try to look at what is known as the elastic modulus of polymer networks and then we can

show that  if  I  have  a  different  class  of  materials,  let  us  say an  ideal  gas  or  a  liquid  their

constitutive relations would be different but the approach that we follow to study deformations

will remain very similar. 

So, in conclusion the basic approach of continuum mechanics is very simple. We are defining a

control volume around a material point P then we write essentially a force balance around that

control volume. The force balance contains basically an inertia term and stress terms and a body

force term and depending on the relative importance or magnitudes of them we can drop the

terms which are negligible and then we can write the equation of motion for the system so as to

speak that equation of motion is still general in nature what we also need is a constitutive law

that relates the stress tensor with the deformation gradients and for the case of polymer networks

we have shown that it can be written in terms of free energy that is a function of the deformation

gradient tensor that is not a general idea I want to emphasize again that can apply to all types of

systems. Okay. 

So, I conclude with this here, thank you.




