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Microscopic Definition of Stress Tensor- I

Hello  everyone,  so  in  the  last  couple  of  lectures  we  have  been  discussing  the  continuum

mechanics framework to study polymer networks and we have discussed the shear modulus and

Young's modulus of polymer networks and before that we have discussed what is the definition

of a stress tensor. So, now I want to combine few ideas that we have developed in the very

beginning on random walk models that we further extended while we are doing the Rouse model

of the dynamics of a polymer chain to this kind of context when we look at the stress tensor. So,

the idea we will discuss is known as the Macroscopic Description of the Stress Tensor where we

try to put the polymer models within a fluid and try to find the stress tensor that is somewhat of a

macroscopic quantity starting from the models that we have developed which are essentially

particle models or microscopic models of the systems.

So, while developing the expression for the stress tensor we defined a cubic control volume

around a material point P. The material point P and a plane has an outward normal N and we are

interested in the net force acting on this plane for which we had derived the expression as- 

d F⃗= σ́ ⋅ n̂ dS

Where σ is my stress tensor and is a normal vector and ds is the area of the small plane.

So, now if I look at this from a microscopic perspective the force acting on any given plane has

to be because of the molecules that are below the plane and molecules above the plane. So,

although they did not come in our analysis because we are looking at a macroscopic description

ultimately the forces has to appear from the molecules below and above. Let us see if I look at

just that plane containing material point P there will be particles above the plane so there are

particles which are above this plane within the control volume and then there are particles which



are below the plane. So, what it means is if the plane is at certain height H from bottom then the

z coordinates of the particles which are below the plane is less than H and z coordinates of

particles which are above the plane is higher than H okay. And these molecules now interact in

the in the end the plane is simply a hypothetical idea right. So, we just draw some volume and a

surface around a material point and that is what we are calling a plane or a material volume. 

The key idea is that whatever forces which are acting between the molecules the net result or a

net projection of that onto the plane is the stress that we are eventually getting from here. There

is one more component that can give rise to force is because of movement of particles through

the plane. So, the particles can eventually move across the plane and they would also add to

some contribution to the stress in a microscopic sense. It turns out that that contribution because

of  the  movement  of  molecules  through  the  plane  is  relatively  less  important  for  polymer

segments or polymer molecules then compared to say gaseous molecules or liquid state.

So, what we will develop is a description where we look at the particles of this polymer or large

solutes for instance as particles and then we will take into account the effect of the containing

liquid or solvent in a continuum sense just like we have done in the macroscopic definition.

These particles are of course in a solvent let us say water but that solvent is not explicitly models

we do not explicitly modeled we do not really care about the position of say water molecules or

whatever solvent there is we look at the position of the part the solute segments that are below

and above and the force is acting between them and how they contribute to the stress acting on a

given plane or the force acting on a given plane and separately we will look at the forces because

of the solvent using the constitutive law we have discussed for the case of a viscous liquid. This

is  the  analysis  you  can  see  where  it  is  going ultimately we are  going to  replace  the  solute

particles by beads connected by springs and then we have a polymer molecule on n molecules

actually that are present in the system that is the direction we are going to take. So, we start with

solute molecules individually and then we go into details about the polymer models later.

So, we have a plane containing point P and then there are particles which are above the plane and

particles which are below the plane. They will have z less than h and they will have z higher than

h where h is the height of the plane from the bottom of control volume. So, now if I am looking



at  the contribution to  the stress because of  the presence of  these solute  molecules they will

contribute through the forces which are acting between these segments.  So, of course there can

be  interactions  between  segments  below and  segments  above  but  these  interactions  are  not

expected to affect what is happening in the plane because those interactions are somewhat on a

different plane those interactions are not really crossing through the plane containing the particle

P. 

On the other hand if interactions between the particles which are below and above then those

particles interact and their interactions or their field of interaction contains the plane. So, in some

sense that will affect the force acting on the plane the total force acting on the plane. So, what we

are going to say is the net force acting on the plane is because of the interaction between particles

above the plane and particles below the plane. The interactions between only the particles which

are below they will have no consequence on the force acting on the plane which is above it only

when the line connecting the two particles or to solutes to solutes passes through the plane or

crosses the plane then only these forces will contribute to the stress tensor that is not so much of

a poor assumption it is actually is reasonable enough.

The assumption that is more critical here is that we have already mentioned. The first one we

assume that stress due to motion of solutes across the plane are neglected which are important for

gas and liquid and second we are only interested in the contribution to stress due to forces acting

between solute particles above and below the plane. 

So, let us introduce some language here we will call the particles below using an index i and the

particles above using an index j. The force acting on i due to j is given by the vector f ij and there

should be an equal and opposite force acting on j due to i that is f ji that is the language we are

going to use.

So, then we can write the expression for the contribution to the stress tensor as sum over i and j f

ij α looking at α component and then we have to find a way to differentiate between the particles

below and above and we can do that using the step function represent using θ. It means-



σαz=
1
S ∑i , j

f ijαθ (h−r iz )θ (r jz−h )

So, for riz that is the location of the ith particle the z component of that if it is less than h then in

that case the θ function will give you 1. If it is higher than h then the θ function will give you 0

that would be the case if the particles are below the plane particles below it is going to be 1

particles above it is going to be 0. So, in this way i will represent particles below the plane. 

We can do the same idea for the second θ function and what we will  see is  since we have

swapped the sign of the argument here. We are going to have an opposite function here. This

term is going to be 0 when the j is below and when j is above the r will be higher than h, r jz and

in that case the particles which are higher than above are identified as j. So, j would contain

particles above the plane.

So, if I do not differentiate between i and j in the very beginning I put all the particles in the box

just I just looking at this two θ functions we have a way to differentiate the particles below and

above. This net function will only be nonzero when i is below and j is above the plane. So now if

the system happens to be homogeneous then in that case the stress should not depend on the

position of the plane. 

So, if I move the plane up or down I can move the plane in the z direction and I should get the

same stress tensor. This really means that if I now move this plane up or down my stress tensor

should not be changing the other way to say that is I can integrate over the z direction and take

an average that would be the same value as the stress acting on any particular point. So, using

this idea I can write my contribution to the stress tensor due to solute segments as- 

σαz
( p)

=
1
SL

∑
i , j
∫
0

L

dh f ijα θ (h−r iz )θ ( r jz−h )

Where I have simply moved the height from say 0 to L that is the length of control volume and I 

am simply integrating it and I am dividing by the length as you get the same quantity that we 

have.



So, now I can integrate over this θ function keeping in mind that we are now integrating over the 

control volume while moving this plane up like this and it turns out that this is equal to so SL is 

of course V something like this-

1
V ∑

i , j

f ijα (r jz−r iz )θ (r jz−r iz )

So, this function θ (r jz−riz )  will be one when rjz is higher than riz so, this will ensure that j is

always above i and then this will ensure that j is above and i is below and the reason why this to

be the case is because this plane it starts to move up in the very beginning if suppose some

particle is above and some is below then we have a particle here at say r jz and a particle below I

would say riz,  so I  can move the plane starting from a plane parallel  to the plane zone that

contains rij until a plane parallel to that zone containing rj or the particle j because once I am after

this once I have moved further up then both i and j are below the plane and then they do not

affect. So, the integration reason is essentially rjz - riz. So, if I have to look at the net averaged

interaction between particle i and j. I can start from a plane containing i, keep on going up until I

hit a plane that contains particle j, once I cross that then both i and j are below their interactions

will not affect the force acting on the plane if I go down below i then also both i and j are above

and their interactions will not affect the force that is the reason why I am putting r jz – riz. So, now

if I define r⃗ ji  as the difference between r⃗ j  and r⃗i  vectors 

r⃗ ji= r⃗ j− r⃗ i

then I can write my contribution to stress tensor as –

σαz
ϕ
=

1
V ∑

j

f ijαr jizθ (r jiz)

And this I can write as two terms one is when i is higher than j other is when i is less than j. So,

theta function will take care of the fact that one has to be above and one is below we have not

differentiated in the very beginning. It means-

1
V [∑i> j

f ijα r jizθ (r jiz )+∑
i< j

f ijα r jizθ (r jiz )]



So, now I can interchange i and j here does not do any harm because I summing over both i and j

but what I do get is somewhat of a symmetric expression. This becomes –

¿
1
V [∑i> j

f ijα r jizθ (r jiz )+∑
i> j

f ijαr jizθ (r jiz )]

Now we can write this expression also as-

−1
V [∑i> j

f ijα r ijz (θ (r jiz )+θ ( rijz )) ]

The first θ function is higher than 0, = 1 when rjiz is positive. The second θ function is 1 when riz

is positive that means rjiz is negative. So, if I sum these two essentially what I get is 1 because

one of them has to be positive. So, if j is abovthe θ of r jiz will be 1, if j is below then theta of rjiz

will be 1 in any case the sum has to be = 1. So, this means that my contribution to the stress

tensor is something like this –

¿−
1
V ∑

i , j

f ijα r ijz

So, what we have managed to obtain if you look at the last expression is we have represented the

stress acting on this as a multiple of forces between molecules and distances between them right.

So, I can write this as in tensor notation I can write this-

σ́=
−1
V ∑

i> j

f⃗ ij r⃗ij

There is a physical significance attached to it we can think of it as some kind of a force dipole.

So, a given plane P containing point P has a particle above and below it and they have a vector

connecting them are and then there is a force acting between the two points above and below F

and so this kind of forms like a force dipole so as to speak analogous to what we know about an

electric dipole. Electric dipole what happens is we have a ‘+’ and a ‘-‘ion for instance. They are

forming a dipole and then there is a force acting between them and the net dipole movement is



given as something like qr just like here we have fr except that in here we are interested in a

vector quantity f as opposed to a scalar quantity q in the case of an electric dipole.

The other thing to note here is that there is no dot or cross between f and r there forming a dyad

because Sigma is a tensor. So, if I dot f and r we will get a scalar we do not want that even if we

cross it we will get a tensor. So, it is like fr and it perfectly came in terms of indices i and j

although they are repeated they are not in opposite order. So, if I would have written it like this it

may give an impression that it is like a dot product or something of that sort but I want to remind

you also that this is not really and Einstein notation at work here. This ij is because of the force

acting  between  the  particle  i  and  particle  j  and  we  are  summing  over  all  possible  pairs  of

particles i and j in the system.

So,  so  there  is  one  thing  that  I  want  to  add  to  this  discussion  here  that  in  the  end  the

configuration of the solute segments are not going to be fixed with time even at equilibrium. The

solvent molecules will of course keep on moving but we are not we are not considering that, but

the solute molecules also will keep on moving and forming different conformations and therefore

we are not really interested in a particular configuration of the solute molecules where we have

obtained the stress tensor we actually interested in the ensemble average of that in the sense of

what we have been doing for the random walk models. So, actually the stress tensor is going to

be, and ensemble average of this force dipoles and we will start with this particular point in the

next class where as you can expect we are going to replace these solute segments by the bead

spring model of a polymer chain that we had discussed in the Rouse model and then we can get a

more appropriate expression for the contribution to the stress tensor due to solute segments. 

So, with that I conclude here, thank you.




