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Lecture-53

Microscopic Definition of Stress Tensor- II,
Dumbbell Model, Introduction to Rouse Model

Hello everyone, so in the last lecture we have discussed the microscopic definition of a stress

tensor. So, I will continue from that point and we will use the Rouse model of polymer chain that

we discussed earlier in the context of determining the stress tensor for a polymer solution using

the ideas that we have been doing in recent classes.

So, just to quickly recap what we have been doing is I said that there is a plane containing a

material  point P that plane which is  hypothetical in  nature that’s a  small  surface around the

particle and around the around the material point and we look at the particles which are above

this  plane  and  the  particles  that  is  solute  particles  which  are  below the  plane  and it  is  the

interaction between the particles above and particles below that gives rise to the stress that we

see on the plane containing the material point P. So, essentially we denoted the particles below as

i and particles above as j and then there is a force that is acting between the two that is f ij or fji, fij

acting on the ith particle and fij until acting under fji acting on the jth particle in just the opposite

direction that is this is going to be - of fij.

So,  for  this  particular  system  what  we  have  obtained  in  the  last  class  is  I  can  write  the

contribution to the stress tensor because of the solute interactions as- 

σαβ
( p)

=
−1
V ∑

i> j
⟨ f ijα r jβ ⟩

Or in the terms of stress I said it is in terms of the vector tensor notation we have the same thing

as a diode that is formed with f and r. It is –

σ́=
−1
V ∑

i> j

⟨ f⃗ r⃗ ⟩



So, then I said that i and j make sort of force dipole having the force f and having the vector

connecting the two ends ‘r’ and those force dipoles then give rise to the stress that is acting on

the material point actually the plane containing the material point. So, my simple manipulation,

we can see that it should be the same for i less than j because we are not differentiating between i

and j in a homogeneous system we will have the same number of particles above and below the

plane. So, I can write this as-

σαβ
( p)

=
−1
2V ∑

i , j
⟨ f ijα r jβ ⟩

So, this is only the contribution that we get from the solute-solute interactions, we also need to

account for the contribution to the stress because of solvent and that we have said that we will

assume that it is solvent that is viscous in nature and it is somewhat implicit in the sense that we

do not worry about where they are we talk of them in an implicit sense and the effect we assume

to be the same as that of a Newtonian liquid. So, this is the contribution to stress from solute that

we have handled at a particle level or I can say it is explicitly handled and then there is another

contribution that is handled in an implicit manner assuming Newtonian liquid of viscosity η and

that contribution as I said earlier will be –

σαβ
S
=η (καβ+κ βα )−pδαβ

Where καβ=
∂v α

∂rβ

So, now if I add these to the total stress will be given as the sum of these two components-

total stress : σαβ=σαβ
p
+σ βα

s

And this provides a strategy to get the constitutive law because if I know the forces between

segments I can get the contribution from the solute interactions and for Newtonian liquid we

know from implicit notation that we have just written what the stress tensor contribution is. So,

combining those two terms I can get the constitutive law for any fluid that is containing a solute

dissolved in a Newtonian liquid. If it is a different kind of a solvent we can take the equivalent

constitutive law let us say for a power law fluid and combine that with the contribution from the

solute.



So, let us now consider a simpler polymer model and then we go to the Rouse model. In the

simpler  model  that  we call  the Dumbbell  model-  we assume that  the polymer chain can be

represented using only one spring the two beads connected using only one spring. If you think

about it what actually it implies, this implies overall relaxation of a polymer chain and it of

course does not constitute the local motions that can be present inside the polymer chain but in

any case it simplifies the analysis to begin with and then we can extend the idea to a Rouse

model.

So, again going back to my plane containing the material point P, now you can imagine that

many of these dumbbells will pass through the plane and only those dumbbells will essentially

contribute to the stress because of the solute segments which are polymer chains in this case. We

will have the plane and then the dumbbells will essentially be crossing in various orientations

and of course there can be other dumbbells present they do not contribute to stress on plane

containing P and those are crossing will contribute to stress on plane containing P.

Now we can assume that there are a certain number of dumbbells in a continuum volume or we

can talk about a number density of them of dumbbells the numbers per unit volume. So, let us

assume that np is the number density that is number per unit volume of dumbbells. Now if I look

at each of these dumbbells they will have the vector representing the spring r⃗  and then there

will be a force acting on the dumbbell. The force will essentially be –

f⃗ =−k r⃗

σ́=np ⟨ f⃗ r⃗ ⟩

And of  course  this  need  to  be  ensemble  averaged  because  the  dumbbells  can  take  various

orientations in different conformations and we need to somehow multiply this with the number

density of the dumbbells and this essentially would give me a contribution of the type-

σαβ
p
=−np k ⟨ rα r β ⟩



So, using this kind of an idea we can get the contribution from the solute-solute interactions

within the system and now you can see that when I am going for the Rouse model it will have

multiple strings but that springs but in any case that will also be similar to what I have written for

a single spring case. So, let us now do it for the Rouse model keeping in mind that this is the

kind of expression that we will have for every spring in the system. 

So, let us now consider the Rouse model, so now in this case instead of just one spring I will

have many of those springs and only those of the polymer chains which are represented now

using a bead spring model the Rouse model that passes through the plane containing P will

contribute to the stress on the plane containing P. So, now we will have chains again in various

orientations that, passes through the plane. So, the net stress will be because of the many chains

and the spring within the chain will contribute to the net stress that is acting on the on the plane

containing material point P. 

So, now I will not do the complete derivation but outline the key steps but it gives you an idea

like  where  we  are  going.  So,  let  us  assume that  we  have  a  velocity  field  or  flow field  as

represented using something of this sort-

Flow field : v⃗ ( r⃗ , t⃗ )=κ́ ⋅ r⃗

Kappa of course depends on time and the polymer chain is kept within that field.

So now I want to remind you of the Langevin equation or the equation for the Brownian motion

of the polymer chain that I will modify considering that there is an additional flow field present

that is of course not present in the case of Brownian motion because then we did not have any

external field present in the system. So, in this case we will have the equation for the n th bead rn

will be represented using essentially what we had earlier but then we will have an additional term

because of the flow.

Modified Langevinequation :
∂r⃗ n
∂ t

=
k
ζ
∂2 r
∂n2+ v⃗r (n ,t )+κ́ ⋅ r⃗ n



So, there is a net motion as a result of flow plus the random forces acting on the bead plus the

motion due to the springs  between the neighboring beads.  So,  this  I  would represent  in  the

normalized coordinates –

d X p

dt
=

−X p

τ p
+ f⃗ P

This is what we had earlier but now we will have an additional term because of flow which is

going to be like this and I am not deriving it but you can see like how it is coming from so Kappa

dot r gives you in normalized coordinate a term Kappa dot XP in the equation for the Rouse

mode.

So, now when the equation is solved what I will get and again I am not solving it completely and

just outlining the key steps here what I will get is the contribution because of the polymer chain

would be given as something like this-

σαβ
p
=
C
N ∑

p

k p ⟨X pα X pβ ⟩−pδ αβ

Where C is the number density of segments and N is the number of repeating units or segments

depending on how I  define  my kp and we can go further  if  I  assume some kind of  a  flow

situation. 

So, let  us assume that  we have shear  flow. So, in  shear a flow what we will  have is  the x

component of velocity can be represented as something like γ dot of y where γ dot is the shear

rate applied along x direction normal to the y plane and in that case the Kappa tensor can be

written as in terms of the x, y and z components of velocity – 

καβ=
∂v α

∂β



κ́=[
∂ vx
∂ x

∂v x

∂ y
∂vx

∂z
∂ v y

∂ x

∂v y

∂ y

∂v z

∂z
∂vz
∂ x

∂vz
∂ y

∂v z

∂z
]=[

0 γ́ 0
0 0 0
0 0 0]

So in this in this particular flow situation, if I solve the equation what I will get is the equations

in terms of normalized coordinates actually the components of that – 

d X px

dt
=

−X px

τ p
+γ X py+ f px

d X py

dt
=

−X py

τ p
+f py

d X pz

dt
=
X pz

τ p
+f pz

To solve it further what we have to do is to define the stress tensor for the P th Rouse mode and

before we go further let us just recall what the rouse modes where, so Rouse modes represented

the different levels of motion of chain and by levels I mean the locality of the motion the 0 th

Rouse mode represents the center of mass. The first Rouse mode represents the correlation of the

end-to-end distance of the entire chain. The next rouse mode represents the similar thing for half

the chain the next one similar thing for one third of the chain the next higher mode similar thing

for one fourth of the chain and so on. So, as we go to higher and higher values of p we look at

more and more local motion of the polymer chain and each of these motions will then have a

contribution towards the stress tensor and that is what I am defining in terms of normalized

coordinates now. So,

S pxy=⟨ X px X py ⟩

And 

σ xy=
C
N ∑

p

k pSpxy



So, the δr term will be 0 for xy The Kronecker δ is 0 and only the first term is what will remain

and you can notice here that we have looked at the term containing x and y all the others will be

somewhat uncorrelated and that is the reason why we are not writing that. So, using this idea

now the kind of math that we have to do is  we will  multiply the first  equation by Xpy and

multiply the second equation with Xpx and what we then do get is something like on the left hand

side we will have is 
d
dt

S pxy  So, you can see this is Xpy dXpx/dt + XpxdXpy/dt by chain rule this

becomes d/dt of Xpx Xpy which is I represent as Spxy and then this will be equal to on the right

hand side I will have -2 Spxy
τ p , so we get the same term on the left on the right hand side for

both 1 and 2 and that is why we have a 2 factor here. And then we have-

d
dt

S pxy=
−2S pxy

τ p
+ γ́ ⟨X py

2 ⟩

I can approximate ⟨X py
2 ⟩  for weak flow situations that is when the flow rates are not very high.

I can approximate this as-

⟨X py
2 ⟩=

k BT

k p

Essentially this the result that we obtained for no flow. And now if I go ahead I will have the

equation-

d
dt

S pxy=
−2
τ p

Spxy+ γ́
kBT

k p

So this equation now I can solve for Spxy and then I will get the contribution to the stress tensor

from the Pth Rouse mode, if I plug that in the expression for the stress tensor that I have just

obtained so we have we have got the expression for the Spxy that is the contribution to the stress

tensor from the Pth Rouse mode and if I solve this equation and then plug the results back in the

expression for the stress tensor σxy that I have obtained earlier I would get the constitutive law for

the case of Rouse model this is what we will show in the next lecture. 



So, with that I conclude here, thank you.


