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Lecture-58

Rheometers and Rheological Tests- II

Hello everyone in the last lecture we have been discussing about different Rheological tests. We

looked at the constant shear test, the constant shear rate test and while the first one was for solid

samples,  the  second  one  was  for  liquid  samples  and  then  finally  we  talked  briefly  about

oscillatory tests that can give you a viscoelastic behavior by looking into both liquid and solid

like behavior in one go because in that test both the shear and the shear rate varies with time. So

today I will take it further and then try to elaborate on how can we separate the liquid and solid

contributions in a Rheological tests.

So, basically what we have discussed in the small-angle oscillatory shear or the small amplitude 

oscillatory shear is that we will have the shear varying with time by an oscillatory function in 

fact that is a general oscillator shear if it is like a smaller magnitude then actually the linear 

viscoelasticity holds that is why I add the word small amplitude then in that case we will have – 

γ ( t )=γ0 cosωt

γ́ ( t )=−γ 0ωsinωt

And both of them are out of phase by 90 degrees. So, therefore we can look at both the change

with γ and γ́  as two phases of the wave. 

So, in this case if I use the formula that we have got from the superposition principle that is for

the case of a linear viscoelastic material what we do get is the following. So, this was the formula

that we have derived in the last lectures and this is going to be in the case of oscillatory shear-

σ (t )=∫
−∞

t

dt ' G (t−t ' ) γ́ (t )



¿−γ 0ω∫
−∞

t

d t 'G (t−t ' )sinωt

So, now I will do a change in variables, so I will define t−t '  as my t' '  that would give me

- d t'  as d t ' '  and what I will get is –

σ (t )=−γ 0ω∫
∞

0

(−dt ' ' )G (t ' ' )sin [ω (t−t ' ' ) ]=γ 0ω∫
0

∞

d t ' ' G (t ' ' ) sinω (t−t ' ' )

And if I do the math what I have is right now we get is –

σ (t )=−γ 0ω∫
0

∞

d t ' ' G (t ' ' ) sin [ω ( t−t ' ' ) ]

sin [ω (t−t ' ' ) ]=sinωt cosωt ' '
−sinωt' 'cosωt

Therefore we get-

σ (t )=γ 0ω∫
0

∞

d t ' 'G (t ' ' ) sinωt ' ' cosωt−γ0ω∫
0

∞

d t' 'G (t ' ' )cosωt ' ' sinωt

So, now what you can notice is this integrands this entire thing here is a constant because we are

integrating for t' '  going from 0 to infinity. Similarly this is also independent of time because

we also integrate from 0 to infinity both of them actually are a function of ω. So, essentially I can

write this thing as some  G'
 ω and this entire thing I can write as some  G' '

 ω where

G'  and G' '
 are new functions of ω they are not the derivatives of G. So, with this idea I

can write this as-

σ ( t )=(γ 0 cosωt )G ' ( ω)
−( γ 0sinωt )G' ' (ω)



Now since cos ωt is in phase with the applied shear that is γ0 cos ωt and the sin ωt is in phase

with the applied shear rate because that is – ω times γ0 sin ωt what we can think of is this would

be something that is of the sort G γ  and this is something of the sort η γ́ . We have – 

σ (t )=Gγ−η γ́

So, the first one is Gγ and the second one is η γ́  and therefore I can think of G'  (ω) to be a

measure of the elastic behavior and therefore I will call it storage modulus it characterized the

elastic behavior. And the second term G' '  (ω) refer to some sort of a liquid behavior because

it  is  in  phase  with  γ́  this  I  will  call  as  a  loss  modulus  and it  characterized  the  viscous

behavior. 

So,  the  first  one  characterized  the  solid  nature  or  a  solid  like  nature  and  the  second  one

characterized a liquid like nature. So, by doing a single test I can get both  G'  (ω) and

G' '
(ω)   and of course the test can be conducted at different frequencies so essentially we get a

function of frequencies for both storage and loss modulus and they would then characterize the

liquid and solid nature of the sample. 

So, now we can go a step further and define what is known as a complex modulus using the rules

that we use in complex mathematics and what we do is we recall that-

e iωt
=γ 0 [G' (ω ) cosωt−G' ' (ω) sinωt ]

¿γ 0R e [G¿ (ω) e iωt ]

Where G¿ω  is defined as G'  ω+ i G' '  ω and we can say why this should be the case

because if I do G¿ω  eiωt that is going to be equal to 

G¿ (ω) eiωt
=[G' (ω)

+iG ' ' (ω ) ] [cosωt+isin (ωt ) ]



If I look at the real part of this the first term will come from the multiplication of this and this

and the second term will come' multiplication of this with that because i multiplied by i is - 1 and

what we do get-

ωt−¿G' ' (ω ) sinωt
Re [G¿ ( ω) eiωt ]=G' (ω) cos¿

So, instead of working with two functions I can work with one function that is complex in nature

and in that complex function the real part is my storage modulus that characterizes the solid

nature of it and the imaginary part is my loss modulus that characterizes the liquid nature of it

and as I  vary the frequency essentially what I  am doing is  I  am looking at  the response to

different amounts of shear or shear rate because γ is γ0 cos ωt that will change as I change γ and

also the γ́  is - ω multiplied by γ0 sin ωt that is also changing with ω. So, essentially we are

looking at the behavior for different applied shear or shear rate by simply changing the γ value. 

So,  simply  the  functions  G'
 and  G' '

 characterize  the  behavior  of  the  system  that  is

viscoelastic in nature of course if it is Newtonian liquid, and in fact any other liquid that does not

have with no solid nature what we do get is that the  G'
 ω will be 0 for all Omega values.

Similarly if I have a perfect or Hookean solid and in fact any solid with no liquid nature what I

will get is G' '  (ω) = 0 for all gamma both of them are indeed the extremes for the polymer

systems. We always get some finite values for G'  (ω) and G' '
 (ω) that characterized the

fact that polymers are both a liquid light material and a solid light material depending on the

relative magnitudes of that we can comment on how liquid like or solid like that is so let us say if

I look at something of this sort –

|G
'

G' '|= solid−like
liquid−like

If this term is high it means if it is much higher than 1 we say that the material is mostly a solid if

it is much smaller than 1 then we can say the material is mostly a liquid. If it is comparable to 1



we can say it is viscoelastic and in there it can be a viscoelastic liquid or a solid depending on the

magnitude of this quantity and this essentially is some sort of the phase of the complex modulus

that characterize the relative contributions of these two things.

Now we can look at an example function where we have relaxation modulus that is given like

some sort of an empirical function and now I want to find the complex modulus for this case. So-

G ( t )=G e+Ge

−t
τ

G¿ (ω)=G' (ω )+ iG' ' (ω )

¿ω∫
0

∞

d t ' G (t ' ) sinωt '+iω∫
0

∞

d t 'G (t ' )cosωt'

¿ω∫
0

∞

d t' G (t ' ) [sinωt'+iωcosωt' ]

[sinωt '
+iωcosω t ' ]=iωe−iω t '

iω e−iωt '

=iω [cosωt '−i sinωt ' ]

¿ iωcosωt'+ωsinωt '

¿ω [sinωt '
+ (cosωt ' )iω ]

So, we can then write this as-

ω∫
0

∞

d t ' G (t ' ) sinωt '+i ω∫
0

∞

d t 'G (t ')cosωt'=iω∫
0

∞

d t 'G (t ' )e−iωt

So, now we can use the function that we have defined G (t)  is Ge + G multiplied with the

exponential of 
−t
τ  in this particular function and what we do get is-

G¿ (ω)=iω∫
0

∞

d t 'G (t ' ) e−iωt



¿ iω∫
0

∞

d t ' [Ge+G e

−t
τ ]e−iωt

¿ iω∫
0

∞

d t ' Gee
−iωt '

+iω∫
0

∞

d t 'Ge

−t ( 1τ +iω)

So, I can use if I integrate this what you will get is something like 
G ee

−iωt

−iω  and then if you

look at it, this will become a complex number. So, applications of limits become difficult here, so

we use a trick here that will be clear once we do it. Instead of doing that what we do, so will not

do this, what we do is we write the function that we have there as something like this –

¿ iω lim
s→ 0

∫
0

∞

d t 'Ge e
−iω t'−s t '

¿ iω lim
s→ 0 [

Ge

−iω−s
e−(iω+s )t ']

0

∞

Now you can see that since I have added a small s here the upper limit now goes to 0 and the

lower limit of course goes to 1. So, adding the real number essentially makes our job easier. So,

this then gives me –

iω lim
s→ 0

Ge

s+iω
=Ge

We can look at the second term in second term we already have a real number. So, there we do

not have any problem. So, that will be-

G

iω+
1
τ

So, now if I further simplify it what I will get is –

G¿ (ω)=iω[Ge

iω
+

Ge ( iω )

−ω2
−

1
τ

+

G
τ

ω2
+

1

τ2 ]



¿(G e+
Gω2

ω2
+

1

τ2 )+(
iωG
τ

ω2
+

1

τ2 )
So finally 

G¿ (ω)=G ' (ω )+ iG' ' (ω )

This is how we can really go this is how we can really go in any kind of an example if we have

the relaxation modulus given or if it is like an empirical function that we can even try to fit using

the experimental results. We can get the forms of G' (ω)  and G' ' (ω)  for that relaxation

modulus and then if I try to fit using the experimental data we can see whether the empirical

model that we started with is correct or not. So, in this particular case you can note that in the

relaxation modulus the first term is a constant and the second term decays with time. So, the first

term has to be a 0 for a liquid and even for a viscoelastic liquid that eventually at very high times

will go to a liquid like a state because then it should not have an elastic modulus the second term

in any case characterize the liquid nature of it and the first term characterize the more or less the

solid nature of it more or less speaking in the end it is ultimately what fits the experimental data

best  than  what  should  be  an  appropriate  function  because  you  have  a  whole  diversity  of

rheological behavior that you can possibly have.

So, before we go any further let me just tell you that the in the polymer systems you do not

always have a linear elasticity you also can have a nonlinear elasticity that is also very common.

So, if for example my η that is the viscosity that we often also call the apparent viscosity in the

language of Rheology if this happens to be a complicated function for example containing terms

like something like these-

η (r )=
f

1+( γ́
γ́ c

)
Then these systems will not show behavior that is linear in nature and in that case we can still

talk about linear viscoelasticity in certain limits of maybe a small shear rates but the system's



overall will not follow the linear viscoelasticity. So, all the kind of maths that we did and actually

the starting assumption of superposition that we have used to write the expression for the stress

tensor this is not going to hold for nonlinear viscoelastic models. 

So, the key messages we have to apply some caution it is not that the storage and loss modulus

cannot  be  found  for  the  case  of  polymeric  systems,  the  experimental  protocols  have  this

machinery  built  into  it  but  the  expression  for  the  shear  stress  that  is  obtained  using  the

superposition principle is not going to be valid. We will have more detailed models to find the

stress in terms of the modulus and that is what I am not discussing in this course.  

So,  with  that  I  want  to  conclude  this  lecture  in  the  next  lecture  I  will  talk  about  a  simple

viscoelastic model that is called a Maxwell model that is used by people working in Rheology in

analyzing the viscoelastic behavior of systems what we will notice is that that particular model is

not really coming from the molecular principles that we have been doing in this course. This

model is rather phenomological in nature knowing that the system shows a viscous behavior and

an  elastic  behavior  we  can  try  to  build  and  another  class  of  toy  model  that  is  completely

phenomological in nature not starting from the molecular models. 

So, before we really conclude here what I also want to mention is that ultimately going from the

equilibrium properties and thermodynamics to Rheology we have come really a very long way

and what we have not really explicitly mentioned is the scales of applicability of those theories

when  we are  doing  a  Rheology we of  course  are  not  looking  at  a  molecular  level.  At  the

molecular level the whole idea of the flow and deformation the way we have been talking about

does not really make as much sense as at the level of larger macroscopic samples of course when

we are doing Rheological tests we are doing on samples of sizes of millimeters or centimeters at

least  and  therefore  we  have  been,  over  the  passage  of  time  in  the  course  we  have  been

developing more and more larger scale theories that are relatively less accurate but they cover

different kinds of phenomena. 

So, this is the whole approach I would say is sort of a multiscale modeling approach we started

with molecular models when we were interested in behaviors such as Brownian motion diffusion



the size of a polymer chain and so on. We start talking about continuum mechanics when we look

at the overall flow and deformation of the system. The reason why these two models look very

different is not really that there is any new physics that is happening there and is not happening

here but what is more important is that we have no direct way to link the molecular models to

say rheological or flow and deformation models. 

So, there are efforts in that direction. So, now we can do for example molecular dynamics and try

to get viscosities and so on. But those efforts still are limited to very small systems and not yet

came in the field of polymers a whole lot you can do molecular dynamics and get the viscosity of

a sample but those samples will be much smaller than what you can put into a Rheometer and

that is the reason why we have been doing rather approximate or phenomological models which

are  relatively less  accurate  but  explain physics  at  larger  length scales  then compared to  the

molecular models and in this course you have seen a very nice bridge between all these class of

models because we started from a Rouse model using that we obtain the expression for viscosity

even if we knew that it did not capture the effect of entanglement and so on and we discussed

detailed models in that direction but at least is what it was some effort in that direction so the

polymer physics essentially is multi scale to that extent because we try to use molecular models

in  various  contexts  as  much  we  can  and  then  finally  when  we  give  up  we  go  to  the

phenomological models. 

So, with that I want to conclude here and in the next lecture we discuss the phenomological

Maxwell model that explains the viscoelasticity of polymer systems, thank you.




