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Part I

In  the  last  lecture,  we  discussed  random  walk  models  for  polymer  chains  and  the  main

assumption that we made was the interactions along the contour, or the correlations along the

contour decay with the distance along the contour. Based on that,  we discussed a variety of

models  starting  from  the  freely  jointed  chain,  where  the  segments  were  moving  in  an

uncorrelated way, and then we discussed one dimensional  random walk also referred as  the

drunkard walk, then we discussed the random walk on a lattice that was like a 2D lattice to begin

with and then we generalised to the case when it can be any lattice where the number of possible

paths are like z.

We also studied the case where these models do allow for the chains to folding back to itself, in

that case if we allow for the folding back and that we studied for the case of z dimensional

random walk and we found that we still get the same scaling law i.e.  The mean square end to

end distance is going like the number of repeat units or the mean square end to end distance

going like the number of steps or segments in random walk.

Finally we studied the constants in the equations which are associated by something known as

the Kuhn length (b) and number of Kuhn segments (M). If we decrease the b or increase the M

what essentially we have a chain that is more flexible and opposite of that is if we have the

higher value of the Kuhn length and lesser value of the number of segments, this is less flexible

or we can say this one to be more stiff and the other one to be less stiff. This is an idea typically

applied to flexible polymers with variable stiffness. There is a better model for the chains that are



not really flexible. There are a class of models for semi flexible polymers, which are not really as

flexible as they have certain stiffness, known as the wormlike chain (Kratky-Porod model).

Let’s look at what kind of chemistries will give rise to stiffness in polymers. So, far we have not

really alluded to any kind of chemistry, what we said was many polymer chains show a generic

or universal behaviour that can be given by the model that we referred as an ideal chain. But the

idea behind it was that if we look at the backbone of polymer chain then it consist of carbons

which have a bond between them, 3 carbons adjacent will have an angle between them. But, then

there are rotations around the carbon-carbon bond, which give rise to some kind of a torsion like

movement and that give rise to many confirmations of polymer chains.

So,  chains  which  are  stiff  have  certain  chemistries,  which  prevent  the  rotations  to  happen

between them with an ease that we are discussing in all through. It can happen for example in 3

or 4 cases, the first one is when there is some kind of a delocalisation of valance electrons, let us

discuss what happens in that case.

So, let us say if we have a polymer chain that contains benzene rings in place of usual carbon

backbone and let us say we can have also possibility of having some functional groups on the

benzene ring. Then as you can expect from the chemistry of benzene that the electrons or the

valance electrons here are delocalised, which is also referred as the conjugation of pi electron,

and in that case it turns out that the chains are relatively stiffer.

This can also happen if there is hydrogen bonding between chain segments, for example- DNA

which is not a polymer but it does contain certain repeating units, so what really happens in this

case is we have some sort of hydrogen bonding between the 2 strands that give rise to what we
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known as the double helix structure, and these strands are now locked in place due to hydrogen

bonding.

There  is  one  more  case  when  this  can  happen,  that  is,  if  you  have  a  strongly  charged

polyelectrolyte, for example, the polystyrene sulfonate- in that case what happens is we have like

a polymer chain which have many charged groups present along the chain and they do have

some kind of coulomb repulsion, and if you have segments of chain which have like Coulomb

repulsion between them they tend to more streched, or they tend to have higher correlation then

compared to what we discussed for flexible polymer chain.

There is one other case when that happens i.e. when you have a bulky side group present on the

polymer chain. For example if we have something like a large side group C6H13 present as a side

group then because of that we do not have easy rotations around the backbone. 

So, in these kinds of chemistries (discussed above) and may be some other chemistries, we have

to think beyond the flexible chain model. We have some inherent stiffness at least for certain

distances along the contour. So, for these kind of scenarios will develop what is known as a

worm like chain or Kratky-Porod model.

The  worm like  chain  or  the  Kratky-Porod  model  builds  on  an  earlier  model  that  we  have

described as the freely rotating chain with one small change. So, in the freely rotating chain the 2

conjugative segments are at an angle theta with each other. The next segment will again be has

certain angle theta and so on , so now you think of like what really happens when theta becomes

very small. In that case our chain will look something like this which is stiffer then compare to

the case when theta was large. So, if I take a limit of the freely rotating chain model for the case

of a small theta what do us get is a worm like chain model which means:

⟨ b⃗n ⋅ b⃗m ⟩=b2 (cosθ )|n−m|



In this equation we will take the limit theta going to 0, and as we can see θ  is going 0 which

means the cos θ is going to 1 and unlike the case when theta was a larger number in that case

the cos θ is much smaller than 1 and so we have a decaying correlation as |n-m| increases, in

this case the correlation decay less rapidly with increase in |n-m|. 

So, we will discuss one other idea, the idea is that we can represent the chain like a line as we

have been doing in many cases and we take the distance along the contour known as the contour

length. So, we can discuss the chain in terms of a contour variable as that is going from 0 to sum

value Lc where Lc is my contour length, so we gave the analogy with the rope and a rope is like

in a folded state. Then as we move along the contour of the rope and the distance we measure is

the contour length. The other way to think about it is if we stretch the rope the length that we see

is my contour length. If we stretch this we will have is the straight line of a length Lc.

If we look at the polymer chain then we don’t really have a segments as in the case of the freely

jointed chain. If we set for example b going to 0, then what we will have is something that really

follows the contour of the polymer chain. As we look at b going to 0, as in the earlier cases if we

use a representation like that for a freely jointed chain then we have a bond vectors b1, b2 and so

on and we set that the length of this vector is 0 then we can see the tangents will give you the

bond vector. So, when b is going to 0 the bond vector is the tangent. the other way to say that is

we can represent the chain where we have variable s going from 0 to s=Lc, at any position on the

chain r is a vector as and if we draw a tangent there then u of s that will be the limiting value of

the bond vector when b is going to 0. So, we can write as:

u⃗ (s )=
d r⃗ ( s)

ds
=b⃗ ( s )=b=0

This is the idea will use in the case of a Kratky –porod model. So, now let us look at this in more

details. Earlier we had something like this:



⟨ b⃗n ⋅ b⃗m ⟩=b2 (cosθ )|n−m|

And now we are representing the polymer chain as a line going from contour variable s=0 to

s=Lc. Then we can think of the 2 points along the contour n and m and the contour length

between these 2 points become my L and so I can write:

|n−m|=
l
b

⟨ b⃗n ⋅ b⃗m ⟩=b2 (cosθ )
l
b

Now we since θ  is going to 0 we can think of this function cos theta in terms of it is Taylor

series. So, now we will write the Taylor series. Here it is:

f ( x+h )= f ( x )+h f ' (x )+
h2

2
f ' ' ( x )+…

X=0 , h= θ

cosθ=cos0+θ (−sin 0 )+
θ2

2
(−cos0 )+…≈1−

θ2

2

So, keep in mind that we can only do this when θ  is a small, when it’s larger then we cannot

do a tailor expansion as this will only work when the theta value is small.



So now, we will use one other formula that works for the case when b is going to 0 and that is the

limit of p we can write this as-

⟨ b⃗n ⋅ b⃗m ⟩≈b2[ lim1
b

→∞ (1−

θ2

2b
1
b

)
1
b ]

l

≈b2exp (−l θ2

2b )

So now we can write the 2b/theta square to be some quantity that I will define as lp which is

called as persistent length. Now if we look at it b is very small θ   but lp happens to be finite as

we are dividing 2 numbers which very small. So, this is a finite quantity is the persistent length

and it is like half of the Kuhn length. So, now I can write the equation we have derived in terms

of the persistent length.

2b

θ2
=l p=persistent length

⟨ b⃗n ⋅ b⃗m ⟩=b2 exp(−l
Lp

)

Now since  we  represent  the  bond  vector  by the  tangent  in  the  limit  of  b  going to  0  what

essentially it implies is we can divide this by b square here and these becomes my tangents at

those points at n and m. So, the tangents here will be given by bn/b, bm/b both for the limiting

cases of b going to 0. It can be written as:

⟨ b⃗n

b
⋅
b⃗m

b ⟩=exp(−l
Lp )

Finally we can write this expression as:



⟨ u⃗ (s )⋅ u⃗(s '
)⟩=exp (−|s−s '|

Lp
)

Here l is the distance along the contour and the variable s is to define the contour. So, s is going

from 0 to Lc, so between n and m if I find the s values take it is difference we will get smaller

than l.

So, this is a relation that now we can use to find the end to end distance of the polymer chain in

the terms of Re.

R⃗e=r⃗ (Lc )−r⃗ (0 )

∫
s=0

Lc d r⃗ ( s )

ds
ds=∫

s=0

Lc

u⃗ ( s ) ds

So now when we do the Re2 averaged we will have something of this sort-

⟨ Re
2 ⟩=⟨∫

s=0

Lc

u⃗ ( s )ds ⋅ ∫
s'=0

Lc

u⃗ ( s ')ds ' ⟩=∫
s=0

Lc

ds ∫
s'=0

Lc

ds '

We have used different variables s and s’ just to recall from the previous discussion as we used

different indices for the 2 terms and the reason was to include the cross terms is here we want to

include the cross term.

Now we will find the mean square displacement from the above equation:

⟨ Re
2 ⟩=∫

s=0

Lc

ds ∫
s'=0

Lc

ds ' ⟨ u⃗ (s ) u⃗ ( s' ) ⟩



¿ ∫
s=0

Lc

ds ∫
s'
=0

Lc

ds ' exp(−|s−s '|
Lp

)

So, now I have, so this integral we can do in 2 parts. So, for s less than s’ this is going to be

∫
s=0

Lc

ds ∫
s'
=0

Lc

ds ' exp (|s
'
−s|
Lp

)+∫
s=0

L c

ds ∫
s'
=0

s

d s 'exp (−s−s '

Lp
)

¿2∫
s=0

Lc

ds ∫
s'
=0

s

d s 'exp(−s−s '

Lp
)

 For s higher than s’ we are going to have- 

⟨ Re
2 ⟩=2∫

0

Lc

ds e
−s
Lp∫

0

s

d s 'e
s
Lp [ e

s '

Lp

1
Lp

]
¿2Lp∫

0

Lc

ds e
−s
Lp [e

s
Lp−1]

¿2Lp∫
0

Lc

ds [1−e
−s
Lp ]

¿2Lp[Lc−
e

−s
Lp

−1
Lp

|
0

Lc

]



¿2Lp[Lc+Lp
(e

−Lc

Lp −1)]

⟨ Re
2 ⟩=2 Lp

2 [ Lc

Lp

+e
−Lc

Lp −1]

There are 2 variables in this problem Lc = contour length and Lp = persistence length,

Using this expression in the next class we will describe how we can look at the limits of a stiff

chain and show that in one limit it becomes rod like chain, in other limit we have got flexible

chain.

 So thank you.



 


