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Part II

In the last class, we discussed the mean square displacement relations for another stiff chain 

model, which we called as the worm like chain or the Kratky Porod model. So, we have a 

polymer chain, and we define a contour variable s that goes from 0 to Lc,, where Lc is contour 

length and we found the end to end displacement vector Re, Re can be written in terms of the 

position vector R which is a function of s along the contour. So, we can write as:

⟨R e ⟩=r⃗ ( Lc)−r⃗ (0)

If we take a limit b going to 0, then we can talk of segment vectors or bond vectors as the tangent

to this particular graph and based on that what we derived was the mean squared end to end

distance. We can write this as:

⟨ Re
2 ⟩=2 Lp

2 [ Lc

Lp

−1+e
−Lc

Lp ]
(*)

Here, Lc = Contour Length and Lp = Persistent length (characterizes the stiffness of the polymer

chain).

So, now what we will do we will take 2 extremes, one in which the persistent length L p is very

high and another case when this Lp  is very small. So, just to recall briefly the correlation of the

tangent vector went like this:



⟨ u⃗ (s )⋅ u⃗(s '
)⟩=exp (−|s−s '|

Lp
)

So, in this case the magnitude of Lp characterises the amount of correlation that we have in the

system. 

Now we will take a limit when we have Lp is much higher than Lc which means my persistence

length is much higher than the contour length, and in that case Lc/Lp become very small, i.e.,

Lc

Lp

≪1

So, we can do a Taylor expansion of the exponential term here, because the argument of the

exponential is very small number. Hence we can write:

That is, using Taylor series formula
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We can write the Taylor expansion as:
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So, if we put this expression in the previous expression (*) what we do get is:
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After cancellation, we finally get:

⟨ Re
2 ⟩ ≈ Lc

2 [1− Lc

3 Lp

+…]

If Lc by Lp is really very small, that is, when we can say say persistence length is almost like

infinity Lp→∞

then second term also drops down and what we do get is:

⟨ Re
2 ⟩ ≈ Lc

2

It essentially means that end to end distance become equal to the contour length and the chain is

actually like a rod because only in that case the contour length will be same as the end to end

distance. This is referred as the “rod like limit” which is obtained when Lp is much higher than

Lc.

Now look at the opposite extreme when the Lp is very small and let us see like what happens in

that case. So, again we will reproduce the formula (*) here:

⟨ Re
2 ⟩=2 Lp

2 [ Lc

Lp

−1+e
−Lc

Lp ]

In the earlier case, we looked at when Lp is much higher than Lc, now we look at when Lp is

much lesser than Lc. So, that means Lc/Lp is much higher than 1, so in this case we can really

drop the exponential term because the power to the exponential is a negative number and that is

very high. So we can write (*) as:

⟨ Re
2 ⟩ ≈2Lp

2 [ Lc

Lp

−1]≈2 LpLc



Now, try to recall the relationship that we derived for a flexible chain. What we had was:

⟨ Re
2 ⟩=N b2

When we take the limit b→0  we have:

Lc=Nb(for flexible chains)

Comparing we have,

b=2Lp∨Lp=
1
2
b

which is something that we discussed earlier that the persistent length must be equal to half of

the Kuhn length. So, in this particular limit we can say the chain is flexible.

We have already discussed the couple of cases where the chain has to be stiff: (1) delocalisation

of valance electrons , (2) a bulky side group , (3) strong polyelectrolyte where there is coulomb

repulsion between the segments of chain, (4) hydrogen bonding between segments like the case

of the DNA molecule. But otherwise also, if we look at a particular polymer chemistry and if we

look at say small chains containing lesser number of carbons then they have to be stiffer as

compare to the chain containing more number of carbons. This is because we will require more

segments to represent the chain or the number of confirmations will increase. In the beginning,

we have discussed the number of confirmations are equal to 3m, where m is the number of repeat

units. So, using that idea what we can think that smaller chains containing fewer carbons or

oligomers will be always more stiff compare to larger chains or the actual polymers. 

So, in more systems for the same polymer chemistry if we change the number of repeat units and

we look at Re2, what you will get is in the very beginning (small N), Re
2 ~ N2. The mean squared

end-to-end distance is going like Lc
2 and as Lc is increasing N is also increasing, so my Re

2  will

go like N2. But after that we recover the behaviour Re
2  ~ N for longer chains. This has been

observed in many polymer chemistries that for smaller values of N, we do see rod like behaviour



and then transitions to a flexible behaviour for longer chains and Kratky Porod model is very

helpful to look at how the transition takes place. 

In an experiment you do some kind of scattering and get the mean size of the chain and from

there you want to calculate the end to end distance. The quantity to measure is not the end to end

distance but what is known as the radius of gyration, that is one way of doing it, the other way of

doing it is we try to do some kind of a simulation that incorporates the detailed chemistry into it.

The one thing that is becoming more used in the polymer literature is what is known atomistic

simulations, where we can represent the polymer chain not by a toy model but by the complete

chemistry that incorporate that means we will represent the polymer chain as composed of all its

atoms. The limitation though is that these simulations will not work if the number of carbons

become high (realistic polymers), just because the system size become huge. Think of it like as

we are not looking the polymer chain in isolation, the polymer chain must be in a solvent and in

that case we also need to model the solvents which are present around it, and it turns out that by

the current computational resources we can only model like chains of say 20 or 30 or 50 carbons,

not beyond it.

So, in the regime where the chain is rod like or going towards flexible behaviour, so in this

particular regime when Re
2  is going like N2. In that particular regime, we can also do atomistic

simulations but it will not work for large N. If we work with like toy models, we are capturing

the entire regime but that is still remains to be a toy model. So what we can do is we can validate

or find out some of the parameters of Kratky Porod model also by using the simulations, if we

are able to get this particular cross over where the chain goes from rod like regime to a flexible

regime and this remains we would say a challenge in the polymer simulations but it  is now

possible for certain polymer chemistries.

The  other  point  here  is  apart  from  the  polymer  chemistry  what  also  is  important  is  the

environment of the polymer chain. So, a polymer chain can have different mean square end to

end distance if we put the same chain in different solvents. So, the amount of stretching or the

amount of a swelling of a polymer chain would depend on what solvent it is present in, whether



it  is  favourable  to  the  polymer,  whether  the  polymer  dissolves  in  that  solvent,  whether  the

polymer likes that solvent, whether the polymer hates that solvent, and that is one factor that one

has to consider.  

The other factor is the effect of temperature. So, the same polymer chain can show different

behaviour  at  different  temperatures,  so  it  can  be  for  example  more  stretched  at  a  certain

temperature and if I go to for example higher temperature it can become collapsed or vice versa. 

These effects are some things that we have not so far considered in the toy model and for this

reason we are limited to the scaling behaviours that are either in the ideal chain limit or in the rod

like limit. In later classes, I will tell you when we deviates from this particular scaling laws and

how to address that in the models that we have discussed.

So, the other thing I want to remind you is so far we only looked at the short range correlations

along the contour but there can also be long range correlations. There is something called an

excluded  volume  interaction  that  comes  into  play  when  2  segments  of  polymer  chain,

irrespective  of  their  distance  along  the  contour  come  together  and  it  turns  out  that  these

interactions depend on the solvent and the temperature, and if we try to include them into the

model  we  will  have  deviations  from  ideal  chain  behaviour.  This  has  been  observed

experimentally as well for many polymer cases and we will discuss that in the coming lectures.

 So, with that, I stop here thank you.




