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Welcome back. From this lecture onwards we will start a new module on characterization of 

polymers and in today's lecture the focus will be on polymers in solution.  
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Now, first question is why do we need to study polymers in solution? Most of the polymer 

characterization techniques which we will learn in coming lectures, for example, molecular 



weight measurement, molecular weight distribution, molecular dimensions, overall 

compositions, basic chemical structure and detailed microstructure, they are mostly carried out 

in dilute solution. By dilute it means, it is approximately less than 2% weight by volume in the 

solution. Another reason is that many of the applications of polymers are in solution e.g. 

biomacromolecules like proteins, nucleic acids function mainly in aqueous environment and 

understanding of their solution behavior is a must to understand the function of proteins and 

nucleic acids.  
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Let me begin with thermodynamics of polymer solution. A solution can be defined as a 

homogeneous mixture of 2 or more substances and a homogeneous mixture means mixtures at 

molecular level, i.e. if I collect a sample from different parts of the solution, the molecular 

composition of different parts will be same.  At usual thermodynamic conditions of constant 

temperature and pressure for a 2 component system, for example, a solute and a solvent, the 

spontaneous formation of solution requires that the Gibbs free energy of the system after 

mixing which is represented as G12 should be less than the summation of Gibbs free energy of 

the individual components. Now, going forward, 1 will generally represent the solvent 

component and 2, the solute component. In the solution, the Gibbs free energy of mixing at 

constant temperature and pressure should be less than 0. From our basic knowledge of 

thermodynamics at constant temperature and pressure, we can represent Gibbs free energy of 

mixing as, 

∆𝐺𝐺𝑚𝑚  =  ∆𝐻𝐻𝑚𝑚 − 𝑇𝑇∆𝑆𝑆𝑚𝑚 



where, ΔHm is enthalpy of mixing, ΔSm is entropy of mixing and ΔGm must be less than 0 to 

form the solution spontaneously.  
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Now, let us begin with the ideal solution of small molecules. An ideal solution is a mixture of 

molecules having identical size, which means, mole fraction is equal to the volume fraction 

and delta Vm, which is the change in volume on mixing, is zero. That means, whatever the 

volume was before mixing is same after mixing, and the forces acting between the two like 

molecules are same as forces acting between the unlike molecules which means here the forces 

between solute molecules are same as the forces between solvent molecules. i.e., 1-1 

interactions are of same energies as 2-2 and 1-2. In effect this means that enthalpy of mixing 

is zero or we call this as athermal mixing and hence there is no change in translational, 

vibrational, rotational entropy associated with the molecules as well as there is no change in 

entropy of intermolecular interactions of the components upon mixing. The entropy of mixing 

comes only from the combinatorial part of the entropy, we also call this as configurational 

entropy in some text. So, in Gibbs free energy of mixing, the ΔSm, in case of ideal solution of 

small molecules comes only from the combinatorial entropy.  
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Now, let us discuss how to calculate this combinatorial entropy for small molecules leading to 

ideal solutions and for that lattice theory was proposed earlier and combinatorial entropy of the 

system is given by the number of possible distinguishable spatial arrangements. For a given 

state we know the Boltzmann equation, which is given by this expression, S is entropy, k is 

Boltzmann constant and W, sometimes expressed as omega (ɷ), is the number of possible 

distinguishable degenerate (states of equal energy) arrangements in this case.  
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In the 3D lattice model for ideal solution we have a 3D matrix, though in this screen it has been 

represented as 2D but you can imagine that there are cells coming out of this computer screen 



as well as there are cells behind the screen forming a 3D structure. For simplicity, it is shown 

as 2D structure here. Now, the total number of cells in this lattice is the total number of 

molecules, which is represented as N0, and size of each cell is equal to the size of 1 molecule 

of the solvent or solute, and since we have considered ideal solution, they are same. Now, when 

we have this lattice filled up with two components, the one shown here with the red circles are 

for solutes. We generally represent solutes by the number 2, and this green ones as solvent 

molecules, the number of solute molecules are given by N2 and number of solvent molecules 

given by N1. So, total number of molecules is capital N1 + N2. N0 is the total number of cells 

in this lattice. As there is no preference, or preferred interaction between solvent and solute 

molecules, we can place the solvent and solute molecules randomly in these cells. So, the 

combinatorial entropy will be given by the entropy after mixing which is given by klnW. The 

entropy before mixing is given by klnW1 + klnW2 corresponding to solvent molecules and the 

solute molecules respectively. If this lattice was filled up with only solute molecules, with only 

red circles, then how many different distinguishable ways we can arrange these circles? It 

would be only 1, since no matter how many interchanges between these circles you make, you 

will always land up with the same arrangement because they are all red circles. So, W2 would 

be equals to 1. Similarly, if this lattice is filled up with only solvent molecules or green circles, 

then also we will have W1 is equals to 1 because we will have only 1 distinguishable 

arrangement irrespective of how many number of exchanges or interchanges we do between 

these circles within this lattice. So, W1 would be also equals to 1 and W2 also will be equals to 

1. So, Wm would be given by the number of ways we can arrange these N1 + N2 molecules, and 

we can remove the arrangements which are done by interchange between the similar molecules. 

We get the number of distinguishable arrangements that can be possible from N1 solvent 

molecules and N2 solute molecules, will be given by this expression. The combinatorial entropy 

for this mixture is given by this expression where n1 is the number of moles of solvent 

molecules, which is given by number of molecules divided by Avogadro's number, n2 is the 

number of moles of solute molecules, and x1 is nothing but mole fraction of solvent molecules 

and x2 is the mole fraction of solute molecules.  

∆𝑆𝑆𝑚𝑚  = 𝑘𝑘(ln𝑊𝑊𝑚𝑚 − ln𝑊𝑊1 − ln𝑊𝑊2) 
 

𝑊𝑊1  = 1        𝑊𝑊2  = 1 
 

𝑊𝑊𝑚𝑚  =  
(𝑁𝑁1 + 𝑁𝑁2)!
𝑁𝑁1!𝑁𝑁2!

 

 
∆𝑆𝑆𝑚𝑚  =  −𝑅𝑅(𝑛𝑛1 ln 𝑥𝑥1 + 𝑛𝑛2 ln 𝑥𝑥2) 



 
𝑛𝑛1  =  𝑁𝑁1 𝑁𝑁𝐴𝐴⁄        𝑛𝑛2  =  𝑁𝑁2 𝑁𝑁𝐴𝐴⁄  

 
𝑥𝑥1  =  𝑛𝑛1 (𝑛𝑛1 + 𝑛𝑛2)⁄          𝑥𝑥2  =  𝑛𝑛2 (𝑛𝑛1 + 𝑛𝑛2)⁄  
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Now, that was in the case of ideal solution. Most of the solutions are non-ideal and there could 

be 3 types of non-ideal solutions possible, one is athermal where ΔHm or enthalpy of mixing is 

0, but entropy of mixing is not same as ideal solution; second possibility is just a reverse, where 

ΔS is mixing is same as ideal solution, but enthalpy of mixing is not equals to 0. And the third 

is irregular where both are not same as ideal solution. Now, most of the cases of small 

molecules, they differ from ideality because of non athermal mixing or in another way that 

enthalpy of mixing is not equals to 0. For example, if we mix water with ethanol we will get 

non-ideal behavior because of ΔHm not equals to 0. In case of polymer solutions, non-ideality 

is generally due to both non-athermal mixing i.e. ΔH not equals to 0 and contribution to entropy 

by other than combinatorial effect. So, basically there could be other entropies which will also 

contribute in ΔSm for polymer solutions. Vapor pressures of polymer solutions are invariably 

much lower than what is predicted from Raoult’s law.  
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Let us now discuss the lattice theory for solutions of polymers. We must recall that for ideal 

solutions for small molecules, we had identical size of the components and there was no 

preference of interaction between like and unlike molecules. So, we had ΔVm is 0 and ΔHm is 

0 as well. Now, in case of polymers solutions, these two assumptions are not accurate. These 

two scientists, Paul Flory and Maurice Huggins actually deduced a theory for thermodynamics 

of polymers solutions, considering the large differences in the size of solutes e.g. polymers in 

this case, and solvent molecules in a polymer solution, and also the existence of intermolecular 

interactions between the polymer molecules and the solvent molecules. So, they basically 

considered these two non-ideal situations and derived an equation for polymers solution.  
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These are the two possible reasons for deviation from ideality for polymers solution. So, in first 

case, we will consider that, this is ok, that for the polymer solution, ΔH, you know, it does not 

contribute anything on ΔHm. We will only first consider the effect of large differences in the 

size of solute, in this case polymer and solvent molecules.  
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Flory and Huggins considered the polymer molecules to be chains of segments and each 

segment being equal in size to the solvent molecule. They considered that a polymer chain 

consists of several segments of equal length and each segment have same volume as the volume 

of a solvent molecule. So, the number of segment in one polymer molecule is given by 

x=V2,m/V1,m where V2,m and V1,m are molar volume of polymer and molar volume of solvent 

respectively So, x is proportional to the degree of polymerization, but not necessarily equal to 

the degree of polymerization for that particular polymer. Now, if N2 is the number of polymer 

molecules, then the total number of polymer segments present in the solution is given by xN2, 

x is the number of segments for one polymer and N2 is the total number of polymer molecules. 

Now, if I have N1 number of solvent molecules, then I need to construct a lattice with a total 

number of these many cells plus N1 cells, then we can fill all the cells with either solvent 

molecules or a polymer segment. So, we can construct a 3D lattice having N0 numbers of cells, 

and each of these cells will be filled with either a solvent molecule or a polymer segment. So, 

the total number of cells in this 3D lattice will be given by N1 number of solvent molecules 

plus total number of polymer segments present in this solution.  
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If we have a solvent molecule in this lattice, next solvent molecule I can place anywhere, evene 

next to the existing solvent molecule. So, the number of ways I can place this second solvent 

molecule depends on the number of free cells present in this lattice, there is no bias that it has 

to be placed in a particular area in these 3D cells. However, in case of polymer, if I have a 

segment placed in this particular cell, then the next segment can only be placed in the second 

cell in the neighborhood, as the next segment is covalently connected with the first segment. T 

he number of neighboring cells is given by the coordination number in this particular case and 

we generally represent the coordination number as z. So, this second segment can only be 

placed among the available cells, which is in the neighborhood of the first segment and the 

third can be placed in the vicinity of the second and so on.  
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We must  understand that there are two assumptions that the polymer solutions are dilute in 

nature (concentration < 20 g dm-3) and another approximation, called mean field 

approximation, where it is assumed that the segments of polymer molecules which are already 

present in the lattice, they are distributed uniformly in the lattice, not localized in any part of 

the lattice. So, if we consider these two assumptions, then we can deduce the expression for 

the entropy of mixing for a polymer solution. Now, again for the solvent molecules, because 

they are of identical molecules, W1 is 1 as we discussed earlier, but for polymer molecules W2 

is greater than 1, because each polymer molecule can adopt many different confirmations. As 

a result, we can have many distinguishable spatial arrangements of the sequence of segments. 

Hence, W2 is not equals to 1 in this case, but it is much larger than 1. So, when we consider the 

entropy of mixing, in this case W1 is 1, so entropy term is 0. So, we will have the expression 

 ΔSm= k(lnWm - lnW2).  

Now, in this case, the model is derived by Flory Huggins in such a way that they found out the 

number of ways each polymer segment can be introduced in the lattice where the lattice was 

partially filled with some of the polymer molecules. Then, if this segment has to be placed, 

then it has to be placed in the vicinity of this segment. Number of cells totally available is z, 

but out of that z number of neighboring cells, some are already occupied with existing polymer 

segments now, so, it can be only placed in the free neighborhood cells and that free 

neighborhood cells will be given by z - 2, one this side and another the other side multiplied 

by the volume fraction of the polymer molecules present in the system. So, when a fresh 

segment is introduced in the cell, the number of ways it can be introduced within the cell is 

proportional to z - 2 multiplied by the volume fraction of the polymer molecule. Now, I am not 



going in the details of derivation of Flory Huggins equation, but I am straight going to the 

expression they have derived for entropy of mixing which is given by this expression.  

Δ𝑆𝑆𝑚𝑚 =  −𝑅𝑅(𝑛𝑛1 ln𝜙𝜙1 + 𝑛𝑛2 ln𝜙𝜙2)      
 

 Where     𝜙𝜙1  =  𝑁𝑁1 (𝑁𝑁1 + 𝑥𝑥𝑁𝑁2)⁄  
 

𝜙𝜙2 = 𝑥𝑥𝑁𝑁2 (𝑁𝑁1 + 𝑥𝑥𝑁𝑁2)⁄  
 

In case of small molecules, we had mole fraction. Now, in this polymer solution, instead of 

mole fraction, we have volume fraction. So, ɸ1 and ɸ2 are the volume fractions of solvent and 

polymer molecules, respectively, in this solution. So, n1 is the number of moles of solvent 

molecules, n2 is the number of moles of polymer molecules and ɸ1 is the volume fraction of 

solvent and ɸ2 is the volume fraction of the polymer molecules. So, this is the expression for 

the combinatorial entropy for a polymer solution derived by Flory and Huggins. Why this is 

combinatorial? Remember, till now we are assuming that ΔHm or enthalpy of mixing is 0. That 

means, the only contribution to this entropy of mixing comes from combinatorial entropy. 
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We have considered the first factor till now, we need to consider the other factor as well. 

Because ΔHm is not equals to 0, this will not only contribute to the value for enthalpy of mixing 

in Gibbs free energy but, because of intermolecular interaction, there will be some contribution 

in the entropy of mixing as well.  

Now, in the original theory by Flory and Huggins, it was only considered in terms of enthalpy 

change, but later it was modified in recognition that there must be an entropy change associated 



with the non-randomness induced by the interaction between polymer and solvent molecules. 

We also considered the interactions only among the first neighborhood molecules, only on the 

basis that the forces between uncharged molecules are known to decrease rapidly with their 

distance of separation. Again without going into the derivation part, the entropy of mixing is 

represented by this expression where χ is polymer-solvent interaction parameter, a dimensional 

temperature dependent parameter which is not dependent on concentration, z is the 

coordination number and Δg12 is the change in contact Gibbs free energy as a result of contact 

between solvent and polymer molecules. This is Boltzmann constant and this is absolute 

temperature.  

Δ𝑆𝑆𝑚𝑚 =  −𝑅𝑅(𝑛𝑛1 ln𝜙𝜙1 + 𝑛𝑛2 ln𝜙𝜙2 + 𝑛𝑛1𝜙𝜙2𝜒𝜒) 
 

𝜒𝜒 =  
(𝑧𝑧 − 2)Δ𝑔𝑔12

𝑘𝑘𝑇𝑇
 

 

(Refer Slide Time: 33:01) 

 
 

Δ𝐺𝐺𝑚𝑚 = 𝑅𝑅𝑇𝑇(𝑛𝑛1 ln𝜙𝜙1 + 𝑛𝑛2 ln𝜙𝜙2) + 𝑅𝑅𝑇𝑇(𝑛𝑛1𝜒𝜒𝜙𝜙2) 
 

This is the equation for ΔGm at constant temperature. The first part represents the effect of 

combinatorial entropy which is always negative, as these are volume fractions. So, this term is 

negative, which means that this term always favors mixing which is expected because mixing 

always increases the number of ways two molecules can be arranged in a mixture. The second 

term represent the effect of enthalpy and entropy change due to polymer solvent contacts and 

these basically decide whether the polymer and solvent will mix to form a solution or not? If it 

is less than zero, obviously, then it will form a solution. If it is positive and very high value 

then there will be no mixing as it will make ΔGm a positive term. If it is positive and small, 



then obviously, it will depend on the value of the second part. So, this is the term the value of 

which will determine whether a polymer solvent will mix to form a polymer solution. In the 

next class we will discuss the utility or usefulness of this Flory Huggins equation as well as 

deficiency of Flory Huggins equations, and some derivation of thermodynamic quantities will 

be done. 

 


