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Welcome back in this lecture 24. We will continue our discussion on polymers in solution and  

few applications of Flory Huggins theory. 
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We derived Flory Huggins theory in the last lecture, now some of the usefulness of Flory 

Huggins theory will be discussed here. For example, we will be able to explain large negative 

deviations from Raoult’s law and other equilibrium thermodynamic properties of polymer 

solutions using Flory Huggins theory. We can also explain phase separation and fractional 

behavior of polymer solutions. We can explain solubility behavior of high polymers and 

swelling of polymer networks in different solvents using Flory Huggins theory and we can also 

explain melting point depression in crystalline polymers.  
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Now, there are deficiencies in Flory Huggins theory. This theory, while it is able to predict 

general trends and several thermodynamic properties can be explained but precise agreement 

with experimental data is not achieved. Now, this is because, there are several assumptions 

made during the derivation of Flory Huggins theory, e.g. single type of cells was utilized for 

solvent molecule and polymers segments, which may not be very applicable for polymer 

segments. Another flaw or assumption was made that when we introduce 1 fragment of 

polymer in this 3D lattice, it will assume that all other polymer chains which were already 

present in the 3D lattice are distributed uniformly. Now, that is not true especially in dilute 

solutions, because polymer fragments are or polymers segments are indeed connected to each 

other. Hence, it is not true that the polymer segments which were already present in the 3D 

cells were distributed uniformly and that was mentioned as mean field approximation. So, this 

is not valid for dilute solutions, it may be valid at high concentration of polymers in solution. 

Total number of possible arrangements does not exclude the self intersections of polymer 

chains. Now, polymer chains can actually, there is a possibility that they can overlap with each 



other and some of the vacant cells around a particular segment may not be available due to self-

intersection that was not considered during derivation of Flory Huggins theory. Also the 

addition of these segments in these 3D sets was purely statistical which may not be true if there 

is a non-zero contact energy between solvent molecules and polymer molecules for example, 

any specific solvent polymer interactions may lead to orientation of solvent molecules around 

the polymers segments, which was not considered during the derivation of Flory Huggins 

theory. It was also considered that the polymer solvent interaction parameter χ is not 

concentration dependent, which may not be true. It may be also be concentration dependent. 

So, these assumptions which were made during derivation of Flory Huggins theory are not 

perfectly applicable, that is the reason we do not get precise agreement with the experimental 

data when we predict a thermal chemical property using Flory Huggins theory.  
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Now, we will discuss how this Flory Hugging theory can be utilized to derive some of the 

thermodynamic parameters. Before that let me revise the thermodynamics of liquid mixtures 

quickly.  

∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺 − 𝐺𝐺1∗ − 𝐺𝐺2∗ 

Now, ΔG of mixing is given by this expression, G is the Gibbs free energy of the mixture and 

this is for the pure solvent and this is for pure solute, 2 is generally expressed as solute and 1 

is generally utilized for solvent and this star means, we are talking about pure component.  

�
𝜕𝜕∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
𝜕𝜕𝑛𝑛1

�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

=  �
𝜕𝜕𝐺𝐺
𝜕𝜕𝑛𝑛1

�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

− �
𝜕𝜕𝐺𝐺1∗

𝜕𝜕𝑛𝑛1
�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

− �
𝜕𝜕𝐺𝐺2∗

𝜕𝜕𝑛𝑛1
�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

  



�
𝜕𝜕∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
𝜕𝜕𝑛𝑛1

�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

=  ∆𝐺𝐺1����� =  𝜇𝜇1 − 𝜇𝜇10 

 

�
𝜕𝜕𝐺𝐺
𝜕𝜕𝑛𝑛1

�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

=  𝐺𝐺1��� =  𝜇𝜇1;     �
𝜕𝜕𝐺𝐺1∗

𝜕𝜕𝑛𝑛1
�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

=  𝜇𝜇1∗ =  𝜇𝜇10;     �
𝜕𝜕𝐺𝐺2∗

𝜕𝜕𝑛𝑛1
�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

= 0 

 

So, we can differentiate this with number of moles of solvent and we get this expression. 

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛1

�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

  is for partial molar Gibbs free energy, which is also called chemical potential of 

solvent. In this case, we are using 1 for the chemical potential of pure component and if we use 

1 bar pressure, then this is the standard chemical potential for solvent molecule. And obviously, 

�𝜕𝜕𝜕𝜕2
∗

𝜕𝜕𝑛𝑛1
�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

 is 0.  

 

So, if we plug in these numbers into this expression, we get this right hand side is equal to μ1 - 

μ1
0 and this is we represent as partial molar Gibbs free energy change. Now, negative value of 

Gibbs free energy change at constant temperature and pressure indicates that the solution 

process is spontaneous. So, for a miscible solution, we must have this quantity less than 0.  

 

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇       𝐺𝐺1��� =  𝐻𝐻1���� − 𝑇𝑇𝑇𝑇1�  

𝜇𝜇1 − 𝜇𝜇10 =  Δ𝐺𝐺1����� =  Δ𝐻𝐻1����� − 𝑇𝑇Δ𝑇𝑇1����� 

 

We also know that G is given by H - TS, H is enthalpy and S is entropy. So, the partial quantities 

can be also expressed at constant temperature. So, this term can be expressed in terms of partial 

Gibbs free energy change and further in terms of partial molar enthalpy change, and partial 

molar entropy change of the of solvent.  
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In case of ideal solution, we express pi as the partial vapor pressure of i th component, pi 0 is 

the pressure of the pure component. So, we have seen these in the last slide and we know that 

for ideal solution, the entropy of mixing is given by the following expression where ni is the 

number of moles and xi is the mole fraction of i th component. Obviously, we are talking about 

ideal solutions.  

𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑚𝑚0 =  Δ𝐺𝐺𝚤𝚤����� =  Δ𝐻𝐻𝚤𝚤����� − 𝑇𝑇Δ𝑇𝑇𝚤𝚤���� 
 

Δ𝑇𝑇𝑚𝑚 =  −𝑅𝑅�𝑛𝑛𝑚𝑚 ln 𝑥𝑥𝑚𝑚
𝑚𝑚

 

Δ𝑇𝑇𝚤𝚤���� =  �
𝜕𝜕Δ𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝜕𝜕𝑛𝑛𝑚𝑚

�
𝑝𝑝,𝑇𝑇,𝑛𝑛𝑗𝑗,𝑖𝑖

=  −𝑅𝑅 ln 𝑥𝑥𝑚𝑚 

Δ𝐻𝐻𝚤𝚤����� = 0 

𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑚𝑚0 = 𝑅𝑅𝑇𝑇 ln 𝑥𝑥𝑚𝑚 
𝑝𝑝𝑚𝑚
𝑝𝑝𝑚𝑚0

=  𝑥𝑥𝑚𝑚 

𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑚𝑚0 = 𝑅𝑅𝑇𝑇 ln
𝑝𝑝𝑚𝑚
𝑝𝑝𝑚𝑚0

 

 

So, this partial enthalpy change will be 0. So, if we place these two values in this expression, 

we get μi - μi
0 is RTln xi. Now, if you compare the value for μi - μi

0, between the two 

expressions, we can write pi/pi
0 is equal to mole fraction of i th component and which is nothing 

but Roault’s law. Now, for the real solution, this mole fraction is replaced by activity where 

this mole fraction corresponds to the ideal component and the activity coefficient gives us the 



deviation from ideality. So, we can express this term as ideal component plus an excess 

component which basically determines the deviation from ideality.  

For real solution, 
𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑚𝑚0 = 𝑅𝑅𝑇𝑇 ln

𝑝𝑝𝑚𝑚
𝑝𝑝𝑚𝑚0

= 𝑅𝑅𝑇𝑇 ln 𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑇𝑇 ln 𝑥𝑥𝑚𝑚 + 𝑅𝑅𝑇𝑇 ln 𝛾𝛾𝑚𝑚 

 
𝜇𝜇1 − 𝜇𝜇10 =  (𝜇𝜇1 − 𝜇𝜇10)𝑚𝑚𝑖𝑖 + (𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
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Flory-Huggins equation, Δ𝐺𝐺𝑚𝑚 = 𝑅𝑅𝑇𝑇(𝑛𝑛1 ln𝜙𝜙1 + 𝑛𝑛2 ln𝜙𝜙2 + 𝑛𝑛1𝜒𝜒𝜙𝜙2) 

 

For the solvent, 𝜇𝜇1 − 𝜇𝜇10 =  �𝜕𝜕Δ𝜕𝜕𝑚𝑚
𝜕𝜕𝑛𝑛1

�
𝑝𝑝,𝑇𝑇,𝑛𝑛2

= 𝑅𝑅𝑇𝑇 �ln𝜙𝜙1 + �1 − 1
𝑚𝑚
�𝜙𝜙2 + 𝜒𝜒𝜙𝜙22� 

 

For the polymer, 𝜇𝜇2 − 𝜇𝜇20 =  �𝜕𝜕Δ𝜕𝜕𝑚𝑚
𝜕𝜕𝑛𝑛2

�
𝑝𝑝,𝑇𝑇,𝑛𝑛1

= 𝑅𝑅𝑇𝑇[ln𝜙𝜙2 + (𝑥𝑥 − 1)𝜙𝜙1 + 𝑥𝑥𝜒𝜒𝜙𝜙12] 

 

For per polymer chain segment, (𝜇𝜇2 − 𝜇𝜇20) 𝑥𝑥⁄  

𝜇𝜇𝑒𝑒 − 𝜇𝜇𝑒𝑒0 = 𝑅𝑅𝑇𝑇 �(ln𝜙𝜙2)
𝑥𝑥� + �1 −

1
𝑥𝑥
�𝜙𝜙1 + 𝜒𝜒𝜙𝜙12� 

Now, we go back to the Flory Huggins equation. For solvent we can use partial Gibbs free 

energy or molar Gibbs free energy change with respect to solvent. If we differentiate with 

respect to n1, we get the expression as shown above and for polymers we differentiate with 

respect to n2 which is the number of moles of polymer molecule, we get this expression and we 



generally express polymer in terms of number of segments. because, while deriving the Flory 

Huggins expression we consider that polymers consist of several segments and each segment 

has same molar volume as the solvent molecule. We generally expressed this term in terms of 

per polymers segment. So, we divided this by x which is the number of polymer segment and 

if we consider that polymers have different chain length, they will have different number of 

segments as well. If we consider that, then instead of just writing number of segments, we can 

write number average number of segments in the polymer sample, but, for time being, we will 

not consider the average quantity, will consider as polymer chains having similar molecular 

weights. So, we will consider x.  
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For the solvent, 𝜇𝜇1 − 𝜇𝜇10 = 𝑅𝑅𝑇𝑇 �ln𝜙𝜙1 + �1 − 1
𝑚𝑚
�𝜙𝜙2 + 𝜒𝜒𝜙𝜙22� =  −𝑅𝑅𝑇𝑇 𝜙𝜙2

𝑚𝑚
+ 𝑅𝑅𝑇𝑇 �𝜒𝜒 − 1

2
�𝜙𝜙22 

For dilute polymer solution, 

𝜙𝜙2 =  
𝑥𝑥𝑛𝑛2

𝑛𝑛1 + 𝑥𝑥𝑛𝑛2
 ≈

𝑥𝑥𝑛𝑛2
𝑛𝑛1

 

𝑥𝑥2 =  
𝑛𝑛2

𝑛𝑛1 + 𝑥𝑥𝑛𝑛2
 ≈ 𝑛𝑛2 𝑛𝑛1⁄  

Now, for the solvent, we have seen this expression in last slide. Now, if we assume a dilute 

polymer solution, then we can express the volume fraction of the polymer with total number of 

polymer segment, this is number of polymer segment in 1 polymer chain, this is number of 

polymer chain could give the total volume of the polymers and this is total volume from 

polymer plus solvent. So, this gives the volume fraction. So, because this n1 is much higher 

compared to this term, we can write approximately this equals to this. Similarly, the mole 



fraction of the polymer we can write or approximately like this and if we also assume that this 

is independent of polymer concentration, then simply by mathematical expression we can write 

this expression from the original gives Flory Huggins expression. We know that this can be 

expressed for a real solution as sum of 2 parts, one ideal part and another is excess part which 

quantifies the deviation from ideality. Now, this can be expressed, x1 can be expressed as (1 - 

x2).  

 

So, if you compare these two following expressions, the first term is the ideal quantity. Hence, 

this second term must be equal to the excess quantity of partial molar Gibbs free energy change 

for a real solution. Hence, we can write this excess quantity, which is the measure of deviation 

from ideality as given below, where chi is the polymer solvent interaction parameter.  

𝜇𝜇1 − 𝜇𝜇10 = 𝑅𝑅𝑇𝑇 ln 𝑥𝑥1 + 𝑅𝑅𝑇𝑇 ln 𝛾𝛾1 

 

𝜇𝜇1 − 𝜇𝜇10 =  (𝜇𝜇1 − 𝜇𝜇10)𝑚𝑚𝑖𝑖 + (𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

(𝜇𝜇1 − 𝜇𝜇10)𝑚𝑚𝑖𝑖 = 𝑅𝑅𝑇𝑇 ln 𝑥𝑥1 = 𝑅𝑅𝑇𝑇 ln(1 − 𝑥𝑥2) =  −𝑅𝑅𝑇𝑇𝜙𝜙2 𝑥𝑥⁄  

 

(𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑇𝑇 �𝜒𝜒 −
1
2
�𝜙𝜙22 
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As shown in the slide, this first term is because of polymer solvent contact interactions. In ideal 

solution, there is no contact interaction, ΔH or the enthalpy change of interaction between 

polymers and solvent is 0, but in this case this is not 0. In case of real solution, as enthalpy 



change is not 0, it also influences the polymer conformation. So, there could be the entropy 

change as well, due to polymers solvent interactions, and the second term is because the 

polymers segments are connected. The molar volume of polymers and the solvents are not 

same. So, this term arises because of the fact that polymers segments are connected. Once again 

if we look at the polymer solvent interaction parameter; it is a measure of thermodynamic 

affinity of the solvent for the polymer and it is a measure of quality of the solvent and it is 

temperature dependent.  

 

Now, if the excess term is negative then the partial molar Gibbs change will be lower than the 

ideal value, which means, the polymer will dissolve in the solvent even better way than in case 

of ideal solution. If this is positive, then obviously, the solvent quality is not as good as ideal 

solution and the solubility of the polymer will lower than ideal case. Now, this is a negative 

term, contribute negative way to this excess term. Hence, this is the term which basically 

determines whether the solvent is good or solvent is not good and which indirectly is 

determined by this polymer solvent interaction parameter χ. Now, this is temperature 

dependent, and hence with change in temperature this value also will change. Hence, the 

miscibility of polymer and the solvent will be also dependent on the temperature at which the 

solution is being made.  

 

For example, if χ is 0.5 or 1/2, then this excess term becomes 0 which means, the solvent is 

behaving like an ideal solvent and the polymer solvent mixture is behaving like an ideal 

mixture, which means that enthalpy of mixture is 0 and polymer segments are as if they are not 

connected. We call this solvent as ideal solvent or theta solvent and the temperature at which 

these polymers solvent interaction become equals to 1/2, we call that temperature as theta 

temperature.  

 

This is the temperature where the solvent becomes ideal solvent for the polymer in 

consideration. If χ is less than 1/2, then this term become negative which means the solvent is 

good solvent, it is better than the ideal solvent and if it is greater than 0.5, then this term 

becomes positive. So, the solvent is poor solvent that means, the solvent is not as good as the 

ideal solvent, the solubility of the polymer decreases compared to the ideal case. Hence, the 

smaller is the value of this polymer solvent interaction parameter, the better is the solvent 

thermodynamically. So, if we manage to decrease the value of chi then the solvent will be better 

solvent for the polymer to dissolve and in generally, in most of the cases as we increase the 



temperature, the value of χ reduces or decreases. This means, if we increase the temperature, 

generally the solubility of the polymer in a solvent increases because the value of polymer 

solvent interaction parameter decreases.  

 

We will discuss this in little more detail, when we talk about phase behavior of polymer in 

solution in coming lectures.  
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We will come to the modification of Flory Huggins theory. Now, this polymer solvent 

interaction parameter consists of entropy component and enthalpy component and we have 

seen this expression before. So, we can express this excess term as partial molar Gibbs free 

energy excess term which can be expressed in terms of enthalpy and entropy. Flory further 

modified this expression.  

𝜒𝜒 =  𝜒𝜒𝑆𝑆 + 𝜒𝜒𝐻𝐻 
 

𝜇𝜇1 − 𝜇𝜇10 = Δ𝐺𝐺1����� = Δ𝐻𝐻1����� − 𝑇𝑇Δ𝑇𝑇1����� 
 

(𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Δ𝐺𝐺1�����𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Δ𝐻𝐻1�����𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇Δ𝑇𝑇1�����𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
 

Δ𝐻𝐻1�����𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑇𝑇𝑅𝑅𝜙𝜙22             𝑇𝑇Δ𝑇𝑇1�����𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑇𝑇𝑅𝑅𝜙𝜙22 
 

(𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑅𝑅𝑇𝑇𝑅𝑅𝜙𝜙22 − 𝑅𝑅𝑇𝑇𝑅𝑅𝜙𝜙22 = 𝑅𝑅𝑇𝑇(𝑅𝑅 − 𝑅𝑅)𝜙𝜙22  
 

(𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑇𝑇 �𝜒𝜒 −
1
2
�𝜙𝜙22                      (𝑅𝑅 − 𝑅𝑅) = �𝜒𝜒 −

1
2
� 

(𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0        Δ𝐻𝐻1�����𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜃𝜃Δ𝑇𝑇1�����𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 



Now, if we replace this term with these new terms we can get an expression where ψ is the 

entropic term and κ is the enthalpy term. If we compare with our original Flory Huggins 

equation, we can equate (κ- ψ) = (χ- ½). In case of ideal solvent because the excess term 

becomes 0, this excess partial molar enthalpy becomes equals to θ. This is the θ temperature 

and multiplied by the partial molar entropy change. Now, this θ is a temperature, this is a 

positive term. Hence, the sign of these 2 excess terms must be same, which means if the partial 

molar enthalpy change increases, the corresponding entropy also will increase and θ sometimes 

can be said as the ratio of the partial molar excess enthalpy divided by partial molar excess 

entropy.  
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(𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑇𝑇 �𝜒𝜒 −
1
2
�𝜙𝜙22 = 𝑅𝑅𝑇𝑇𝑅𝑅 �

𝜃𝜃
𝑇𝑇
− 1�𝜙𝜙22 

(𝜇𝜇1 − 𝜇𝜇10)𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  ∝ �𝜒𝜒 −
1
2
� 

 

So, this is the Flory Huggins theory.  Now, as we explained that this may not accurately predict 

the solubility behavior, but this actually is proportional to this term. For many polymers solvent 

systems, if we decrease the value of χ, polymer solvent interaction parameter, this terms comes 

down which means the solubility of the polymer in that particular solvent increases.  

 

We can equate this term as well using the modified Flory Huggins theory and in this particular, 

this is entropic term. Now, for some solvents, most of the solvents, this entropic term is 

positive, which means that on dissolution, due to contact interactions between the solvent and 



solute molecules, the entropy change become positive and in this case, the mixing will happen 

only when temperature is greater than the θ temperature, in that case this term becomes 

negative.  

 

Now, in some solvent polymer system, if there is strong hydrogen bonding or some strong 

electrostatic interaction, in that case, entropy terms can be negative. Due to the strong hydrogen 

bond formation or hydrophobic interaction, there is actually decrease in entropy due to contact 

between polymer and solvent molecules. In that case, θ must be greater than the temperature 

or temperature must be lower than the θ temperature to effect the mixing between polymer 

solvent system. So, to basically to predict or to identify a solvent for a particular polymer, 

polymer sample, we need to have idea about their θ temperature as well as the sign of this 

entropy factor which basically depends on the interaction between interaction behavior 

between polymer and the solvent system. 
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𝜇𝜇1 − 𝜇𝜇10 = 𝑅𝑅𝑇𝑇 ln 𝑎𝑎1 = 𝑅𝑅𝑇𝑇 ln
𝑝𝑝1
𝑝𝑝10

  

                                     = 𝑅𝑅𝑇𝑇 �ln𝜙𝜙1 + �1 −
1
𝑥𝑥
�𝜙𝜙2 + 𝜒𝜒𝜙𝜙22� 

For high MW polymer, 𝜇𝜇1 − 𝜇𝜇10 =  𝑅𝑅𝑇𝑇[ln𝜙𝜙1 + 𝜙𝜙2 + 𝜒𝜒𝜙𝜙22]  

We will now talk about relative vapor pressure and χ. This helps us to determine the value of 

χ. We go back to the original equation of μ1 - μ1
0 and we can write this expression from Flory 

Huggins theory. If the polymer molecular weight is large, then x will be also large, in that case, 



we can ignore 1/x  compared to 1. So, we can just write this term and we can basically rearrange 

the term to get the final expression.  

 

Now, what is pi ? pi is the partial vapor pressure of the solvent in the solution and pi
0

   is the 

vapor pressure of the pure solvent at that particular temperature. This is one example of 

polystyrene molecular weight of 2,90,000 in toluene and methyl ethyl ketone. So, if we plot 

ln 𝑝𝑝1
𝑝𝑝1
0 − ln(1 − 𝜙𝜙2) − 𝜙𝜙2 in Y axis, and 𝜙𝜙22 in the X axis then the slope will be given by the 

polymer solvent action parameter. This is for methyl ethyl ketone and this is for toluene for 

this particular example. So, from just by measuring the vapor pressure of the solution and with 

the knowledge of the vapor pressure of pure solvent, we can actually find out the value of 

polymer solvent interaction parameter using this equation.  

ln
𝑝𝑝1
𝑝𝑝10

=  ln𝜙𝜙1 + 𝜙𝜙2 + 𝜒𝜒𝜙𝜙22 =  ln(1 − 𝜙𝜙2) + 𝜙𝜙2 + 𝜒𝜒𝜙𝜙22 

ln
𝑝𝑝1
𝑝𝑝10

− ln(1 − 𝜙𝜙2) − 𝜙𝜙2 =  𝜒𝜒𝜙𝜙22 
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𝜇𝜇1 − 𝜇𝜇10 = 𝑅𝑅𝑇𝑇 ln 𝑎𝑎1 = −Π𝑉𝑉1� = 𝑅𝑅𝑇𝑇 �ln𝜙𝜙1 + �1 −
1
𝑥𝑥
�𝜙𝜙2 + 𝜒𝜒𝜙𝜙22�

= 𝑅𝑅𝑇𝑇 �ln𝜙𝜙1 + �1 −
𝑉𝑉1,𝑚𝑚

𝑉𝑉2,𝑚𝑚
�𝜙𝜙2 + 𝜒𝜒𝜙𝜙22� 

Π = −
𝑅𝑅𝑇𝑇
𝑉𝑉1,𝑚𝑚

�ln𝜙𝜙1 + �1 −
𝑉𝑉1,𝑚𝑚

𝑉𝑉2,𝑚𝑚
�𝜙𝜙2 + 𝜒𝜒𝜙𝜙22� 

 



ln𝜙𝜙1 = ln(1 − 𝜙𝜙2) = −𝜙𝜙2 − 𝜙𝜙22 2⁄ − 𝜙𝜙23 3⁄ −⋯            𝜙𝜙𝑚𝑚 = 𝑐𝑐𝑚𝑚 𝑑𝑑𝑚𝑚⁄      𝑉𝑉𝑚𝑚,𝑚𝑚 = 𝑀𝑀𝑚𝑚 𝑑𝑑𝑚𝑚⁄  

 

Π
𝑐𝑐2
−
𝑅𝑅𝑇𝑇𝑑𝑑1𝑐𝑐22

3𝑀𝑀1𝑑𝑑23
=
𝑅𝑅𝑇𝑇
𝑀𝑀2

+
𝑅𝑅𝑇𝑇𝑑𝑑1
𝑀𝑀1𝑑𝑑22

�
1
2
− 𝜒𝜒� 𝑐𝑐2 = 𝑅𝑅𝑇𝑇 �

1
𝑀𝑀2

+ 𝐴𝐴2𝑐𝑐2�         𝐴𝐴2 =
𝑑𝑑1

𝑀𝑀1𝑑𝑑22
�

1
2
− 𝜒𝜒� 

 

𝜇𝜇1 − 𝜇𝜇10 = −𝑅𝑅𝑇𝑇𝑉𝑉1,𝑚𝑚 �
𝑐𝑐2
𝑀𝑀2

+ �
𝑉𝑉1,𝑚𝑚

2𝑀𝑀2
2� 𝑐𝑐2

2 + �
𝑉𝑉1,𝑚𝑚
2

3𝑀𝑀2
3� 𝑐𝑐2

3 + ⋯�    𝑖𝑖𝑛𝑛 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛 

 

We can also use osmotic pressure and determine polymer solvent interaction parameter. Now, 

here Π is the osmotic pressure, and 𝑉𝑉1�  is partial molar volume of the solvent. We can again 

write the Flory Huggins theory and rearrange. In this case x is the ratio of molar volume of the 

polymer divided by molar volume of the solvent. So, we can just rearrange, this is the molar 

volume of the solvent molecule and this is the molar volume of polymer molecule. So, you can 

rearrange and get the osmotic pressure in this way and with the knowledge that we can express 

the mole volume fraction of solvent as volume fraction of polymer using this approximation. 

Also we can express this volume fraction of either solvent or the polymer as concentration of 

that solvent or polymer divided by the density, and molar volume as molecular weight divided 

by density. So, if you utilize all these mathematical formulas, then we can express the osmotic 

pressure divided by the concentration of the solute and we can have this expression and in case 

of dilute solution, we can write this as a virial expression. Now, this is just a mathematical 

derivation so there is nothing to be discussed too much. This term A2 is given by this expression 

is also known as polymer solvent interaction term, which is related to the volume of solvent 

interaction parameter.  
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𝜇𝜇1 − 𝜇𝜇10 = −𝑅𝑅𝑇𝑇𝑉𝑉1,𝑚𝑚 �
𝑐𝑐2
𝑀𝑀2

+ �
𝑉𝑉1,𝑚𝑚

2𝑀𝑀2
2� 𝑐𝑐2

2 + �
𝑉𝑉1,𝑚𝑚
2

3𝑀𝑀2
3� 𝑐𝑐2

3 + ⋯�    𝑖𝑖𝑛𝑛 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑠𝑠𝑛𝑛 

For a real solution is expressed in a parallel form as 

𝜇𝜇1 − 𝜇𝜇10 = −𝑅𝑅𝑇𝑇𝑉𝑉1,𝑚𝑚 �
𝑐𝑐2
𝑀𝑀2

+ 𝐴𝐴2𝑐𝑐22 + 𝐴𝐴3𝑐𝑐23 + ⋯� = −𝑅𝑅𝑇𝑇𝑉𝑉1,𝑚𝑚 �
𝐶𝐶
𝑀𝑀

+ 𝐴𝐴2𝑐𝑐2 + 𝐴𝐴3𝑐𝑐3 + ⋯� = −Π𝑉𝑉1,𝑚𝑚  

Π
𝑐𝑐

= 𝑅𝑅𝑇𝑇 �
1
𝑀𝑀

+ 𝐴𝐴2𝑐𝑐 + 𝐴𝐴3𝑐𝑐2 + ⋯� 

𝐴𝐴2 = �
1
2
− 𝜒𝜒�𝑣𝑣22 𝑉𝑉1,𝑚𝑚⁄           𝑣𝑣2 = 𝜙𝜙2 𝑐𝑐2⁄  

𝐴𝐴2 = 𝑅𝑅 �1 −
𝜃𝜃
𝑇𝑇
� 𝑣𝑣22 𝑉𝑉1,𝑚𝑚⁄  

So, in dilute solution, we can express this quantity as this, and for real solution, we can express 

this term as a virial expression.  We can express this term in terms of osmotic pressure and 

molar volume of the solvent. So, finally, we can express the osmotic pressure in terms of 

concentration, c is the concentration of the polymer and we can get this expression where M is 

the molecular weight of the polymer and c is the concentration of the polymer in solution and 

these are the virial coefficients.  

 

If we plot now, we can measure the osmotic pressure at different concentration and then plot 

Π/c with respect to concentration and from the intercept we can get the molecular weight and 

from the slope initial slope, we can get this A2 term which is this. So, from there we can get 

the polymer solving interaction parameter as well. Now, this expression also can be used to 

determine the polymer molecular weight.  

 

When we discuss determination of polymer molecular weight after 2 lectures, we will recall 

the equation and just show how the static pressure measurement can be used to determine the 

molecular weight of a polymer sample.  v2 is the volume of the polymer which can be expressed 

as volume fraction by concentration. In next lecture we will discuss about solubility parameters 

and how to use solubility parameters to determine and predict the solubility behavior of 

polymer in a particular sample. 


