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Wave Functions, Probabilities and Average (expectation) Values for Harmonic 

Oscillator 

 

Welcome back to the lectures in Chemistry. And this is the continuation of the quantum 

mechanics and the elementary atomic structure course. And this particular lecture 

continues from where we left of in the harmonic oscillator. 
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In the last lecture, let me recall what we did; I mentioned that the wave functions and the 

harmonic oscillator Hamiltonian. However, I did not solve the Schrodinger equation, but 

gave you the final solution, which you might recall here in the last line namely, the wave 

functions psi n of x; where n is a quantum number and takes values from 0 all the way up 

to infinity assuming that the harmonic oscillator motion continues to be like a harmonic 

oscillator for very large amplitudes as well. The wave function psi n of x – it consists of 

two parts. An exponential minus alpha x square by 2; where alpha is the parameter – a 

set for the harmonic oscillator; alpha is defined here as the force constant times the mass 

of the harmonic oscillator divided by the square of the Planck’s constant and this whole 

thing is a square root. And alpha has the dimensions of 1 over the length square. 

Therefore, if x represents the displacement; then alpha x square is dimension less.  



And then the other part of the harmonic oscillator wave function is the solution to the 

Hermite’s differential equation, which is given in terms of the Hermite polynomials H n 

again of root alpha x, so that the polynomial has quantities, which are dimensionless. 

And the quantum number n is of course, 0, 1, 2, 3, etcetera. So, this wave function was 

not derived for you; but the solutions were given to you as solutions derived from the 

differential equation as well as the requirement that the harmonic oscillator wave 

function for very large values of the displacement of the oscillator from equilibrium; the 

wave function goes to 0, so that asymptotically, the wave function dies off. And that is 

important in terms of making certain that the wave function is a normalizable wave 

function. 
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And now, if you go back and look at these formulae; what you have here is the Hermite 

polynomials. And you might recall that, the Hermite polynomial for the first quantum 

number H 0 of root alpha x is actually 1; it is independent of the displacement. H 1 – if 

you recall, I use to write y and I said it was 2y. Therefore, H 1 of root alpha x is 2 root 

alpha times x. And alpha is specific to the harmonic oscillator that we have in question. 

Therefore, if the oscillator is a very rigid oscillator; that is, it has a force constant, which 

is very high; or, if the oscillator is very heavy like its mass is very large; then you see 

alpha is also very large. And that is very important, because if you see if alpha is large, 

that has something to do with the exponential minus alpha x square that I have here – 

that we just… It has a bearing on this term, because the exponential will become very 

narrow. And therefore, the properties of the harmonic oscillator are reflected in the wave 



function, which wills them through the exponential as well as through the Hermite 

polynomial. 
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What is the second Hermite polynomial? H 2 of root alpha x. You remember – that was 

4y square minus 2. Therefore, it becomes 4 alpha x square minus 2. And likewise, for the 

third – H 3 root alpha x. If you recall, it is 8y cube minus 12y for H 3 y. And therefore, 

that becomes when you put y is equal to root of alpha x. It becomes 8 alpha root alpha x 

cube minus 12 root alpha times x, and likewise for H 4, H 5 and so on. And if you recall, 

there was a table of the harmonic oscillator functions, which was given to you; and you 

might recall that, the wave functions have a specific parity. 
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That is, if you look at the wave function psi n of x and psi n of minus x; if you consider 

the wave function psi n of x and psi n of minus x; since you know that, x can take values 

from minus infinity to plus infinity, that is, on either side of the oscillators equilibrium 

position; then psi n of x and psi n of minus x have this property namely, psi n is odd 

function – is an odd function if n is odd – if n is odd; and psi n of x is an even function if 

n is even. And this is quite obviously dependent on the properties of the Hermite 

polynomial that you see here, because you see the exponential of minus alpha x square is 

always even; whether it is plus x or minus x since you have the square of the x here, this 

function is independent of the sign of x.  

However, this function obviously depends on the sign of x as you can see it in some of 

the examples here namely, H 0 of x is independent of x. Therefore, it is independent of 

the sign of x. H 1 of x is simply x. Therefore, H 1 of root alpha x is an odd function if x 

is negative, because the function is also negative. What is the relation between odd and 

even functions? You might kindly recall that, a function is odd if it has this property 

namely, psi of x is a negative of psi of minus x. Therefore, if the argument is negative, 

then the function changes sign. This is odd. 
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A function is even obviously when this does not happen – even if psi of x is equal to psi 

of minus x. And with this definition in mind, you will immediately see that, the odd 

numbered Hermite polynomials namely, H 1, H 3; and if you recall H 5; it contain x raise 

to 5, x cube and then x; nothing else. Therefore, the odd numbered – odd indexed 

Hermite polynomials are all odd functions; and likewise, the even quantum number 



indexed Hermite polynomials like H 0, H 2, H 4, H 6, etcetera are all even. Therefore, 

this property is very important in terms of determining the average values and the 

momentum, etcetera since integrals have some very specific properties with respect to 

odd and even function. Remember – if you are integrating a function between symmetric 

limits – minus a plus a and f of x dx; you can say something about it if f of x is odd. The 

answer is this integral will be 0. If f of x is even; you cannot say immediately what the 

answer is; but you can write the following namely, the integral minus a to plus a f of x dx 

for an even function is 2 times 0 to a f of x dx. So, these are properties, which are 

extremely important. And you can see that, if the integral is odd – integrand is odd 

between symmetric limit; that integral is 0. These are mathematical requirements, which 

are very useful later on when you study more mathematics and more quantum mechanics 

and other problems in physical chemistry. 
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Now, what do we have with respect to these functions? Let us get to the possibility of 

visualizing these functions and visualizing the – visualizing this and visualizing the 

squares. I have some pictures here. 
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This table is extremely important. You might recall that, this was probably shown in the 

last lecture; you can see that, H 0, H 2, H 4, H 6, H 8 – all have even powers of x. And H 

1, H 3, H 5, H 7 – all have odd powers of x. Therefore, the odd Hermite polynomials are 

odd functions and the even Hermite polynomials are even functions of x. 
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Now, how does the wave function look? You recall the energy levels. The energy levels 

if you remember have this expression namely, E n is h bar omega times n plus half; 

where, n is equal to 0, 1, 2, 3, etcetera. Therefore, you can see that, E 0 is h bar omega by 

2; E 1 is 3 by 2 h bar omega; and E 2 is 5 by 2 h bar omega and so on. So, what does that 

tell you? That gives you the picture that, the energy levels are equidistant and the gap 



between any two successive energy levels is exactly h bar omega. So, this is the half h 

bar omega; this is the 3 by 2 h bar omega; this is all in half h bar omega kind of units. So, 

do not worry about these numbers: 2, 4, 6, etcetera. So, the base level is h bar omega by 

2, 3 by 2, 5 by 2, 7 by 2, 9 by 2. And so harmonic oscillator is equally distant and it has 

an interesting consequence in the spectrum of a harmonic oscillator. In fact, the spectrum 

of a pure harmonic oscillator contains exactly one line namely, the transition between 

any pair of nearby energy levels and nothing more than that. In order to excite energy 

transitions between say the level 0 to the level 1 or to level 2 or level 3; you need to have 

the harmonic oscillator behave as an unharmonic oscillator. These things will become 

clearer when we talk about the spectroscopy part of it. 
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But, now, having looked at the energy a little bit, let us see what the wave functions are. 

Psi 0 of root alpha x is 1 – times exponential minus alpha x square by 2 – times the 

normalization constant N 0; let us not worry about that. We will only concern ourselves 

with this. And this, when you plot it as a function of x – negative x and this is minus x 

and this is positive x. If you do that, this is an even function and this is the familiar well-

shaped curve, which is the Gaussian function centered at 0 – at x is equal to 0. And this 

height is obviously N 0; that is the value, because the exponential goes to 1 when x is 0. 

But, for larger values of x, the exponential function decreases – a Gaussian function 

decreases in value. And therefore, this is the well-shaped curve you have here. 
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And in a sense, that is what you see in this picture. That is the well-shaped Gaussian 

function that you see here. And I have put in the parabola – the half k x square, which is 

the potential energy parabola to sort of indicate something in the next few minutes. Let 

us look at the next function namely, H 1 of root alpha x. H 1 of root alpha x is the 

normalization constant N times 2 root alpha x. If you remember, this is the H 1 times 

exponential minus alpha x square by 2. So, if we have to look at it simply, we will plot it 

as y times e to the minus y square by 2; if you want the picture, this is the same as the 

picture that you have; where I have put in y is equal to root alpha x. What does the graph 

look like? 
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So, if you plot this graph – plus y and minus y; if you do that; then since it is y times e to 

the minus y square by 2; this is 0 at y is equal to 0. Therefore, the function is like this. 

And this is also… Please remember from H 1 of root alpha x; this y is root alpha x. 

Therefore, you see that this is an odd function depending on the value of y whether it is 

plus or minus; the function will have plus or minus value. And as y increases from 0, the 

plot sort of goes up with the exponential minus y square very small until it reaches a 

point that exponential minus y square by 2 starts dominating the function; and then this 

whole thing goes back to 0. 

And since it is an odd function, for negative y, it is exactly the same, except to that it is 

on negative side. So, it is not exactly symmetric. But, if you look at this picture, you see 

that, the function is 0 in the middle, where y is 0 – increases and decreases. Therefore, 

this is the odd function. These are wave functions. And likewise, the next function, which 

is 4x square or 4y square minus 2 times exponential minus y square by 2 gives you this 

shape namely, it is negative in the middle and then there are two points, where the 

function goes to 0. And those two points are essentially the points, where the function 4y 

square minus 2 – H 2 of y exponential minus y square by 2 is 4y square minus 2 times 

exponential minus y square by 2. The exponential never goes to 0 except when y is very 

infinitely large – positive or negative. Therefore, this goes to 0 at values y is equal to 1 

by root 2 – plus or minus; there are two values. And remember – y is root alpha x. 

Therefore, x is equal to – you have plus or minus 1 by root 2 alpha – root 2 alpha. So, 

there are two points at which the function goes to 0. 
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So, to plot that here; you have… This is the negative side for the initial value and then 

you have the positive side, which goes back to 0. And also this is the even functions 

when it goes back to 0. And you can see these wrote are two nodes of the function of psi 

2 of x. And for any wave function with a quantum number psi n of x, which is the 

harmonic oscillator Eigen function. There are n nodes at which the psi n of x goes to 0. 

There are n points. But the n is finite. Therefore, the number of nodes is finite. The nodes 

are not a serious problem. What is important is around the nodes, when you worry about 

the probabilities, which is the square of the wave function; what you do is that, you see 

that the negative parts are all canceled out, everything is positive. But near the loads of 

the probabilities will be very small. 

(Refer Slide Time: 20:08) 

 

So, now, let us look at that part in this graph. Let us take the square of the wave function. 

And when you plot the square of the wave function, this is what you get namely, the first 

one is simply exponential minus alpha y or exponential minus y square. And therefore, it 

is has the same shape, except that it is narrower than the wave function. But, what is 

important is that, the probability of finding the harmonic oscillator outside of the 

classical potential region that you have here; that is nonzero. This happens only with 

harmonic oscillator and for any other system in which the potential is finite in any given 

region. Remember – the particle in a one-dimensional box that we looked at; they ensure 

that the particle stays inside the boundary by making certain that the potential energy is 

infinitely positive and repulsive at the boundaries; which meant that, there was no 

leaking of this probabilities of the system outside of the allowed region. 



So, the harmonic oscillator if you look at that; there is this part, which is nonzero outside 

the classical potential energy region; the classical potential energy region is only an 

indicator to tell you that, if the harmonic oscillator were to obey classical mechanics; 

then it is impossible for the harmonic oscillator to be found outside of these two turning 

points. These are the turning points or essentially the points where the harmonic 

oscillator turns in the other direction; that means that is the point where it is kinetic 

energy is 0; its potential energy is maximum; and that is equal to the total energy of the 

harmonic oscillator. This is classical system. Therefore, for a classical harmonic 

oscillator, there is nothing called finding the harmonic oscillator outside of the potential 

barrier. 

Unfortunately, in quantum mechanics, the whole thing is more difficult to imagine; but 

that is what happens that, the square of the wave function being nonzero, except at finite 

number of points here; these are the nodes that you see here. So, the nodes here; for 

example, this is with the quantum number 2 and this is with the quantum number 3; this 

is with the quantum number 4 and so on you see the number of nodes. Around the nodes, 

the probability of finding the harmonic oscillator is small, but never 0, because we never 

talk about the probability of finding the harmonic oscillator at a given point. When the 

variable for the harmonic oscillator motion is continuous, it is always a small interval 

that you have to worry about. And in no finite interval, however small that may be, the 

harmonic oscillator probability is ever 0. Therefore, you see that, the probability of 

finding the harmonic oscillator is always finite in all regions; however, something more 

subtle. 

The second subtle point; the first one is the probability of finding the oscillator outside 

and in the forbidden region – region, which is classically not allowed – that probability is 

finite; it is never 0. This is called tunneling. This is a phenomena, which is introduced for 

the first time when you have finite potential barriers one-dimensional barriers in the 

phenomena of tunneling is something that we find; namely, it is a region in which the 

system probably will have in a classical sense negative kinetic energy; but that is difficult 

to visualize. It is possible for the system to be found in regions, which are classically 

forbidden. That is the quantum mechanical statement. 

 Now, the second important point is that, if you take this wave function, which is the 

ground state harmonic oscillator wave function with the quantum number n equal to 0; 

you see that the probability of finding the harmonic oscillator is very large in the middle; 



that is, very near the equilibrium versus the probability of finding the oscillator at the 

edges, where it is extremely small. 

Now, visualize this from the classical mechanical sense. The harmonic oscillator is very 

fast when it moves away from the equilibrium, because its kinetic energy is maximum, 

and at equilibrium, the potential energy is 0. But, as it goes towards the extreme, it slows 

down and it virtually starts there for a moment and then comes back to equilibrium and 

then goes to the other direction. But, the time it spends on either edges, that is, on either 

side of the potential barrier, is definitely much, much more than the time it spends in the 

middle, that is, right where the potential is 0. Therefore, classically, one would expect the 

harmonic oscillator just space past the equilibrium point in no time; its kinetic energy is 

maximum. Therefore, the probability of locating the harmonic oscillator at the center – 

classical mechanical – mechanics tells you it is very small; and the probability of 

locating the harmonic oscillator at the edges is quite large if one were to picture the 

harmonic oscillator. 

The quantum mechanics at the low energy level gives you the exact opposite of what one 

would expect. Therefore, it is not intuitive; you cannot explain these things except that, 

such things if they can be measured experimentally can be verify our conclusions. It has 

been done of course; that is a separate lecture. A spectroscopy tells you all the time. 

Therefore, you see that, the probability of finding the oscillator for its ground state is 

very large in the middle. But, surprisingly, you go to the next energy; you see that the 

probability of finding the harmonic oscillator in the middle is virtually 0; I mean it is 

almost is 0; it is very, very small. Looks like it is something close to the classical 

mechanics; just not true, because then you see in the middle again it has all these 

functions. So, there is this weird behavior of harmonic oscillator with respect to classical 

expectations continues until you reach very, very large quantum numbers. 
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And now, if you reach very large quantum numbers, what does it do? If you try to plot 

the wave function for very large if the barrier is something like that. And you plot the 

wave function; you will see that, the wave function square is something like that. And if 

you plot it for… This is for say 1, 2, 3, 4, 5, 6 nodes that you have. So, this is psi 6 of y. 

So, if you were to plot this for say psi 20,000; which I cannot do here. 
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But, let me remove this graph and tell you what it looks like. It will look exactly like the 

maximum probability here. And then I cannot draw the squiggles. So, let me just connect 

to the height of the squiggle. Harmonic oscillator will look exactly like that. That will 

be… You imagine there are 20,000 squiggles here. But the probability is very large at the 



extreme and is also very large at the extreme; and then the squiggles are such that you 

can actually plot an amplitude – the height connecting to that. It almost simulates a 

potential energy graph. And therefore, the behavior of the harmonic oscillator – that it is 

spends most of its time towards the edges and much less – almost no time in the middle; 

which is what you would expect classically, is what you see when the quantum number is 

very large, that is, when the energy of the system is very large. So, these are important 

points. Let me summarize. We will do the probabilities calculations in the next part of the 

lecture. 
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So, in summary, psi n of x square dx between minus infinity to plus infinity is I would 

say root alpha x. So, it does not matter; but let me just write that – root alpha x; and then 

that has to be some dimension factor here to ensure that, you are integrating. This is 

equal to psi n square is equal to 1. Best would be to write this as psi n y square dy 

between minus infinity to plus infinity is 1. This is the normalization; which means 

essentially, ((Refer Time: 29:41)) area under the square of the wave function graph. 
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Second: tunneling – probability of finding the oscillator – a simple harmonic oscillator in 

classically forbidden regions – nonzero. Third – probability of finding the oscillator in 

different regions is different for different energies, different regions, is different for 

different energies. Therefore, there is no uniformity except to that, when n is extremely 

large, simple harmonic oscillator behaves similar to classical simple harmonic oscillator 

– classical simple harmonic oscillator. So, these are the things that need to be kept in 

mind. What we will do in the next lecture is to study the probability and also calculate 

some of the expectation values like the average value for the harmonic oscillator position 

and the momentum, etcetera.  

Until then thank you very much. 


