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A bit of quantitative consideration, we will not derive it, but let me explain what it 

means. Recall that that a polyatomic molecule has n atoms 3 n coordinates, and during 

the oscillation, or during the vibration each 1 of the atoms is expected to go away from it 

is equilibrium position. So, if you think atom 1, as having a coordinate x 1, equilibrium, 

and it is instantaneous atom 1, x 1 equilibrium and at any instant of time, it has a 

position, amplitude, x 1, the difference between the two, x 1 minus x 1 equilibrium is the 

amplitude of the oscillation. x 1 is a function of time x 1 equilibrium is not, x 1 is x 1 of 

t, it is a function of time, therefore, during the oscillation the x 1 changes, and as a 

changes the amplitude there is a vibrational amplitude, which is increased and it goes to 

0 and it increases and so on. 

So, this is for the x coordinate of the first atom, and likewise for the y coordinate of the 

atom y 1, y 1, e, and z coordinate is z 1, minus z 1 e. Now when you ask me what these 

coordinates are, if you have to ask me, how do we define the axis system, let us assume 

that these axes system the x y z axes remains fixed at the center of mass of the molecule, 



this is a classical picture, please remember that. In quantum mechanics there is a problem 

in fixing the center of mass to a particular point, if the total momentum of the molecule 

is conserved there is a problem, let us not worry about that. 

Let us worry about the fact that we have the axes system fixed at the center of mass of 

the molecule and we talk about the 3 coordinates of atom 1, then with respect to the 

polyatomic molecule, if I may draw the picture. 
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So, let us assume that some 3 dimensional blobs, of a polyatomic molecule with various 

atoms in positions, bonded to each other and let us assume that the center of mass is 

somewhere here, we will draw 3 axes system, there are reasons there are specific 

methods for assigning these axes system, do not very about it. 

Let us assume, as a first drawn picture that we can assign an axes system and we can find 

out that how this atoms goes away with respect to it is equilibrium position, during the 

vibration, that vibrational vector amplitude is projected on to this axes system into 3 

components, x component, y component, and z component and let us call those as a 3 

coordinates for atom 1, and likewise, if we write for atom 2, similarly x 2 minus x 2 of e, 

as the x coordinate, y 2 minus y 2 of e, z 2 minus z 2 of e, and likewise we can do this for 

all the n atoms, n atoms. 
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So, we have 3 n coordinates, which are likely to change during vibrational motion of this 

molecule 3 n coordinates. 
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Therefore the potential energy of the molecule, during the vibration, is a function of all 

these coordinates x 1, y 1, z 1, x 2, y 2, z 2, x n, y n, z n. Remember this was not a 

problem for the diatomic molecule, because in the case of diatomic molecule we 

consider only the relative displacement of the atoms with respect to each other, 1 

coordinate, now we have got 3 n coordinates. The potential energy in the case of a 



diatomic molecule depended on that 1 coordinate in the form of k x square, where x is 

the amplitude of the vibration.  

Now when you have a polyatomic molecule with 3 n such coordinates, you see that the 

potential energy is going to be a function of all these 3 n coordinates, therefore, it is a 

much more difficult function to write and this were the approximation of a harmonic 

oscillator like approximation, comes out very handy, comes in very handy, right, the 

normal modes as you will see in a few minutes, are nothing other than the extension of 

the harmonic oscillator diatomic molecule to harmonic motions of all the 3 n minus 6 

degrees of freedom of a polyatomic molecule restricted to quadratic in the amplitudes. k 

x square is the quadratic in the amplitude x and if you do that in the case of a polyatomic 

molecule, as a quadratic to every such atomic amplitude, then what you get out these the 

solution called normal mode solution. This is all known in classical mechanics. 

And in quantum mechanics again, you take this picture directly and then you construct 

the vibrational Hamiltonian, and solve for the quantum mechanical normal modes of 

vibration for a polyatomic molecule. So, if we have to write the potential energy as a 

function of all these coordinates and, let me write them as simply r 1, vector r 2, r n, if 

we write this as n vectors, you see that for amplitudes of vibration, the potential energy is 

nothing, but a constant value corresponding to this amplitudes all being 0, what is meant 

by that? Every difference x 2 minus x 2 e, y 2 minus y 2 e, z 2 minus z 2 e, likewise all 

the amplitudes are 0, v 0, corresponding to equilibrium concentration, equilibrium 

geometry, then we have sum over, let me not specify what they are. 
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But sum over, every coordinate dou v by dou x I, x I minus x I e, sum over I equal to 1 to 

n, plus again I equal to 1 to n, dou v by dou y I, y I minus y I e, this is a Taylor series, 

plus, some over I equal to 1 to n, dou v by dou z I, times z I minus z I e, and what you 

have is nothing, but the first derivative in the Taylor series of a multidimensional 

function, dou v, dou v and if you extent this to the quadratic term, which you have is 1 

by 2, sum over I, not equal to j, dou square v, by dou x I, dou x j, x I minus x I e, x j 

minus x j e, and you can write 5 more such products, corresponding to y I y j, z I z j, then 

x I y j, x I z j, y I z j. 
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There are 6 such terms and this is called the quadratic term. It is quadratic. Because you 

see this is a constant evaluated at equilibrium. This is evaluated at equilibrium therefore, 

these are all constants, this is evaluated at equilibrium. 

Now, if the potential is a minimum, is an absolute minimum, we have a way of saying let 

us ignore the potential, these equal to 0. This is again goes back to the harmonic 

oscillator model. We remember the force as minus k x, we integrated the force by writing 

them as a negative derivative of the potential, and then we set the potential at x is equal 

to 0, to be 0, as a scale, that is our minimum. And in the same way if we assume that the 

equilibrium geometry, has the smallest potential energy lest assume that to be the 

minimum therefore, with respect to the minimum, you remember, the minimum is 

defined by the requirement, of all the derivatives of the potential with respect to the first 

coordinate, as you have here, this one, all the derivatives will also be 0, radiant is 0 at the 

minimum with respect to that coordinate, therefore, if we write the potential energy, 

using the small amplitude approximation as a Taylor series, this goes to 0 by our scale, 

this goes to 0 by the requirement that the potential is minimum, this goes to 0 by the 

requirement that the potential is minimum, and also this, and therefore, the very first 

term that is non-zero, is the quadratic term. 

The quadratic term unfortunately contains the x coordinate of 1 atom and the x 

coordinate of the other atom, it contains the x coordinate of 1 atom, and z coordinate of 

the other atom, therefore, quadratic is the mixed quadratic. The normal approximation or 

the procedure is a procedure by which we are able to rewrite this, in the form of new 

coordinates, which will contain only the squares of the individual atoms. 
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When you write this v, in the form of new coordinates q 1, q 2 q 3 n, such that the 

potential energy is to first approximation, nothing other than, sum over I, a constant 

lambda I, q I square, I equal to 1 to 3 n, as opposed to what you have here, what you 

have here is a constant, which is the function of the 2 labels, atom I and atom j, this is a 

lambda I j equivalent, but now if you are able to do an analytical procedure. So, that this 

is changed into this new coordinate. So, that the potential energy is nothing other than 

lambda I, q I square, where now q I are defined as a new amplitudes. This procedure is 

something that one can do analytically, there is no problem with that, and if you cannot 

do analytically for large molecules, we can subject the procedure to a computer program 

and we can get the results numerically, you will see all the animations that I will show 

you in the next few minutes, are based on a procedure of converting them into this form. 
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And so, what you have is h, is nothing, but some over all the atoms of the individual 

harmonic oscillator, I equal to 1 to 3 n, except that now we have 3 n coordinates, and 

therefore, what we have is, of these 3 n coordinates, if we remove the 6 degrees of 

freedom for a linear, for a non-linear system we get 3 n minus 6 normal coordinates, 

corresponding to the q I, this is a very, very gross way of explaining things, but 

mathematically if we have to do it, it gets somewhat complicated, the procedures are 

well known. 

Now, let us see for some real molecular cases, what this will lead to, for vibrational 

motions of the polyatomic molecule. Let us see it one by one, and with a few examples. 
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So, what I have here in this program, I am I am using a program known as Gaussian in 

chemistry, it is 1 of the most important programs in computational chemistry, for the 

discovery of this program, Professor John Porter from Carning (Refer Time: 13:14) 

university, when he did most of this work, got the Noble prize. He shared it with Walter 

Corn for computational chemistry. Walter Corn devised the procedure what is called 

density functional theory, for computing the energies, and the, the quantum mechanics of 

atoms and molecules. 

This is a program which provides you the animations, and calculations that are shown, 

that use to provide you the animation, the calculations are all, they are all numerically 

very accurate calculations. So, here, what I have is the tetrahedral molecule of methane. 

Again you see that methane, as is does not have a dipole moment, but there are going to 

be some vibrational modes in which, the atoms change unsymmetrically, and therefore, 

dipole moments will be introduced. Let us see that, by way of simple definitions, that 

this a 5 atom molecule therefore, there are 15 degrees of freedom, 6 degrees these are 

non-linear molecule, tetrahedral, therefore, 6 degrees of freedom go towards rotation and 

translation, there are remaining 9 degrees of freedom. 

Now, molecule is highly symmetric, and therefore, some of these vibrational degrees of 

freedom have the same energies, and same frequencies. Let us look at this table which is 

not very clear to you, but in this table there are 9 vibrational degrees of freedom, each 



with the vibrational frequency given here, and what is here is the first 3 vibrational 

frequency are the same, the next 2 vibrational frequencies are the same, this is different, 

and then there is another vibrational mode for which all the 3 frequencies are degenerate, 

but the vibrational motions will be different. 

Let us take the first one, 1373.5 centimeter inverse. We will start the vibrational motion 

and see what it looks like. So, this is a, clearly the way you look at it, this is the bending 

motion, look at it from angle, you see that what you have here is the bending of 2 atoms, 

these 2 atoms in 1 plane, and those 2 atoms in the other plane, just look around, this is 

clear in this view, the pair of atoms in a plain perpendicular to the pair of atoms in the 

other plain, undergoing the bending motion. This is one of the normal vibrational modes 

for methane. Let us stop this, and there is another vibrational mode with the same 

energy, now it is easy for you to remember that there should be at least 2 other modes. 

Let us look at, why it should be. See what kind of bending that takes place, which modes 

are bent here, see that these 2 atoms are bent, and this is the other vibrational normal 

mode, let us look at what is the third one, is this is the third vibrational normal mode. So, 

the bending about various axes, there are 3 such equivalent bending modes, in this case. 

What about the next one, the frequency is now 1593 centimeter inverse, and again this is 

a bending vibrational mode, you see that these 2 bonds are bent, and there are relative 

variations positional angle variations and all of this.  

The bending motion is generally of a lower energy than the stretching motion, the 

stretching means you are stretching a given bond like a c h, which is a fairly strong in 

energy, therefore, let us look at one of the stretching motions, and see what it is, with a 

very high energy, you can see that this bond is being stretched, and likewise the other 

bond is being stretched, and there is a certain amount of synchronization, look at it very 

carefully, all the 4 atoms are displaced from the equilibrium, by the same, during the 

same time, by the same amount, because all 4 are hydrogen, same mass, and the 

positions of the atom instantaneously at any point is such that, you see that there is a 

dipole moment created during the motion. There is a net dipole moment, which gets 

created, increases and then decreases to 0 and so on. Therefore, this is an infrared active 

mode, that it can be detected using infrared spectroscopy. 



Now, let me look at another such bending mode, sorry another such the stretching mode, 

and what you see here is again, the stretching of the atoms in a different way, there are 

very specific rules for determining these oscillations, these amplitudes, and these were 

given elaborately by professor Herzberg in his most famous the monograph on molecular 

spectroscopy, professor Gerhard Herzberg did most of his research on this in Canada, let 

us look at one vibrational mode which is very interesting namely, the symmetric stretch. 

Let us looks at that, all the atoms vibrate about the breath in and breath out with respect 

to the equilibrium position, and in this motion of course, there is not a single instance 

where there is a dipole moment, therefore, this there is no dipole moment during the 

motion, and there is no dipole moment for equilibrium structure of methane, and 

therefore, this is not infrared active, this cannot be detected. This is for benzene, this is 

for methane. 

Let us look at some interesting case like the slightly more numerous atom molecule. Let 

us look at the normal modes of vibration of benzene. It is a very classic example, one of 

the most important aromatic molecules of course, c 6 h 6, 12 atoms, 36 degrees of 

freedom, 3 n, 3 n minus 6, benzene is a non-linear molecule, planer in it is equilibrium 

geometry, and what you have is 30 vibrational degrees of freedom. Also benzene has a 

very symmetric structure and therefore, by the rule of nature, by the law of nature, 

benzene also has several vibrational modes which are degenerate. The important thing to 

note is that, benzene does not have any vibrational mode, which is more than w 

degenerate, the previous molecule that I talked about, the ben, the methane molecule, has 

2 degrees of freedom which are triply degenerate, because of certain types of symmetry, 

the molecular symmetry and molecular vibrations are intimately connected to each other, 

is not about, this lecture is not about it, but let us look at the benzene vibrational modes 

to see a little bit more about what normal modes are. 
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So, let me first locate a very low energy vibration 4 1 4, 304, 0.304, that is 414 

centimeter inverse, this is theoretically calculated numbers, there are 30 vibrational 

degrees of freedom. Let us look at the first one, and start the animation to see how they 

look like. Nothing seems to be happening on the screen, but if I just move the plane of 

the molecule, to a slightly better perspective view, you can see that the atoms are 

vibrating; this is nothing but the ring the benzene ring getting distorted. See that 2 of the 

atoms come out of the plane, and other 4 atoms remain, and this motion is such that, a 

there is no net dipole moment created, because whatever is the dipole that is created by 

these 2 groups, is annulled by the other 4 groups. There is no dipole moment; therefore, 

this cannot be detected by infrared spectroscopy. 
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Now, let me look at another benzene vibrational degrees of freedom, degree of freedom 

and here is another one, this is also such that, the, you can see that the rings are getting 

distorted, almost like the benzene is dancing into the tune of a molecular motion. 
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Again if you are look at carefully, there is no dipole moment at any instant of time, 

because the atoms are exactly oppositely placed, as the molecule vibrates, for this atoms 

position this is compensating, for this atoms position this is compensating, and for this, 



this is compensating, there is no net dipole moment, during the vibration therefore, this is 

also infrared inactive. 
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Let us look at another motion where, which has a large dipole moment, the all of the 

hydrogen atoms, come down on the plane, but to keep center of mass of the molecule 

constant, you see the benzene atom, the carbon atoms, go up the plane. Look at it very 

carefully this way, you can see it, let me just rotate the molecule in such a way that you 

can actually see it yes, you can see that that with respect to this, that there is a very slight 

displacement of the carbon atoms, above the plane while there is a large displacement of 

the hydrogen atoms below the plane, above and below the if you look at it, that is 

simultaneously a large dipole moment is created in this motion, because there is no 

compensation between, the dipole moment is created and destroyed, it oscillates between 

zero and some value, therefore, this is infrared active. 
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Let us look at another infrared inactive motion here, this is also a sort of a benzene ring, 

which in which some of the atoms, you see it clearly that, one this 1, 2, 3 the 3, the 

carbon atoms, move up while the other carbon atoms move down, and as this carbon 

atoms moves up, the hydrogen atom moves down, these normal mode, there is a very 

clear mathematical procedure for drawing these normal mode arrows, and how they 

should oscillate, and the fact that this is a 3 n minus 6, or 3 n e is not magical, you know 

there is mathematical structure for doing that, therefore, vibrational motions, at the level 

of very elementary, what is called harmonic approximation, give you a little bit about the 

molecular motion. Benzene in a highly excited state, of course, throws away all of these 

things, this is not going to be the picture, but that is a slightly more advanced part of 

spectroscopy, since we are concerned with the basic or the elementary aspects, we will 

restrict ourselves to the normal modes. So, let us look at this, and all of these are some 

sort of bending mode, as you see it they are low frequency modes. 
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Let us take somewhere in the middle, go to again, slightly different frequency, and what 

you see is now the bending of groups 1, 1, 2, 3, 4 groups, with respect to 1. 2, 3, 4 you 

see that, this slightly more energetic, note the, you can see it using any perspective angle 

that you want take, this is probably better, to see how the individual atoms are, it is, it is 

like nodding it is head, this way and that way. 

Let us look at this motion; this is one of the normal modes. Clearly you see these two, 

they seem to compensate for any dipole changes, these 2 seem to compensate for any 

dipole changes, and these 2 seem to compensate for any dipole change, do they move? 

They do not seem to move, there is very little of that, but this is clear that, this is unlikely 

to be infrared active - yes, it is not detected by infrared spectroscopy. 
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And let us look at a very high energy, one of the most beautiful oscillations of benzene, 

the symmetric stretch of benzene about it is equilibrium position. This is easier to see, 

this is like all the oxy the carbon atoms shrink, while all the hydrogen atoms get 

extended, and there has to be because this is the center of mass, and the center of mass 

cannot move in a genuine vibration. 

We have already removed the translational and the rotational motion of the molecule, 

therefore, what you see, that is why this is called the genuine vibration; there is no other 

contamination by translation and the rotation in this kind of motion. So, what you see 

here is; obviously, molecular motion in which, which is very symmetric, throughout this 

motion there is no dipole moment, therefore, this cannot be detected by infrared 

spectroscopy. How do we do this? The great Sir C V Raman, found a procedure for 

determining all the missing vibrational modes of infrared spectroscopy, through his 

procedure of spectroscopy through scattering, and you would see that, his is a very 

complementary spectroscopy to the infrared spectroscopy, that was known till then, and 

every mode that is not infrared active, for a molecule which has a center of symmetry, ill 

be Raman active. This is the contribution; this is one of the most pioneering 

contributions by the Indian physicists, Sir CV Raman, for which he eventually even 

taught to win the noble prize, in physics. 



This is the benzene symmetric mode; let us see a molecular motion in which there is a 

large dipole moment for benzene. 
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Here is one example, this is a high energy stretching mode, and you see that the dipole 

moments add, because when this increases this decreases, which means the dipole 

moments vectors, and, and the vectors add, therefore, this has to, this has a large dipole 

moment, and this is infrared active. This is a stretching mode bond stretching takes much 

more energy than bending about the bond, than tartion of the ring and so on, therefore, 

you see there is a pattern in describing the molecular motion of the polyatomic 

molecules, tartional motion has small energies, bending modes have slightly higher 

energies, and the stretching modes symmetric and anti symmetric stretching, which 

involve the bond stretching, have higher vibrational frequencies, this is for benzene. 

Let me give the last example of a very complicated molecule, to tell you that this can go 

to any extent. As a last example for today, let us look at t and t, Trinitro Telvin, 

explosive. 
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Hopefully the molecule does not explode on the screen, let us see what it does, when it 

vibrates, the explosion happens when the vibrations goes uncontrolled, and what we have 

here is control very small amplitude oscillations for the molecule. 
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Let us look at a few small amplitude motions, and then examine likewise the, amplitude 

vibrations for other higher oscillations, higher energy vibrational motion. What do you 

see here is a very low energy vibrational motion, and it looks like most of the atoms do 

not move, but they do, in the normal mode approximation, every atoms moves from it is 



equilibrium position by a small amount, but it is inversely to it is masses, therefore, the 

Telvin group, this is the c h 3 group, 2, 4, 6, Trinitro Telvin that is what you have here, 

the nitrogen’s are the blue atoms, the oxygen are the red atoms, the carbons are the gray 

atoms, and the hydrogen’s are the white, small ones. 

So, what you have here is a t and t molecule, which in which you have a tartional motion 

of the methyl group, relative to rest of the ring, and to compensate for the, the effect of 

this, the rest of the rings moves by a very, very small amount. You can see this in various 

angles, to see that there is in fact a very small motional change in the rest of the 

molecule. Let us look at the very large amplitude motion. In fact, let us look at the high 

frequency motion, highest frequency. 
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Let us look at what it does, that is not very interesting, only 2 atoms seem to be moving 

away from each other, for this motion, but again as you see that the rest of them are 

nearly stationery, because the amplitudes of the vibration, relative to that stretching of 

the 2 hydrogens is going to be very small. It is a stretching motion therefore, it has a high 

frequency motion, and here is the stretching of the methyl group, here is a stretching 

again of the methyl group symmetrically. 
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Here this is now, the tarsh, the, let us look at, other is a stretching all over the places, this 

is nitro group for example, is stretched; this carbon carbon group is stretched. 

See that, this is a very complicated motion, how many degrees of freedom does this 

molecule have? I leave it you as an exercise, and will tell you that the answer is 57, find 

out why. Here is an another stretching motion, let us go up and look at that, yes, here is 

the, what you see here is again the stretching of the n o group, and so on. Now the 

current day computational chemistry programs, can pictorially obtain the normal modes 

of vibrational of polyatomic molecules, including several 10s and 20s 30s of atoms and 

even more. With a little bit of approximate theories, we can obtain the normal modes of 

vibrations of many, many atom polyatomic molecules, these are collective motions.  

I will not be in a, I not had the time to describe the local motion, but we will continue 

this in the next lecture, with a description of the local motion and vibrational frequencies 

and so on, how we do this in the laboratory, but let us summarize todays lecture by 

saying, that the normal modes of vibrations of polyatomic molecules, are the exact 

analogs of the normal vibrational or the harmonic vibrations of a diatomic molecule, and 

what we did today, is a qualitative description of the vibrational motion, with a little bit 

of, about the origin of how they come, come, come into effect. There are 3 n minus 6, or 

3 n minus 5, degrees of freedom, depending on the molecular type, and it is possible for 

us to view under small amplitude motion, all these vibrational motions, very, very 



accurately. We will continue this in the next lecture, to study the local modes of 

vibration, until then. 

Thank you very much. 


