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Welcome back to the lectures on chemistry with introduction to molecular spectroscopy. 

This lecture section is to help you with problem solving ability and also to think about 

how to organize your thought process when a set of data are given and you are asked to 

find the solution. Problem solving is an important part of learning, but it is not the only 

part; it is important for you to listen to lectures, it is important for you to read and 

understand things discuss them with your friends and your teachers, but then use these 

problems has to give you confidence that you have understood the material understood 

within codes that material with (Refer Time: 01:13) degree of confidents. 
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So, in this set of problems that we have ten problems, the first problem is requiring you 

to identify which molecules have pure rotational that is microwave spectrum and which 

molecules have infrared spectrum or the molecules which have both of them; and you are 

ask to identify them accordingly. The important point is; for a molecule to have a pure 

rotational or a microwave spectrum; the molecules should have a permanent dipole 

moment in it is equilibrium geometry or a disequilibrium configuration. For a molecule 

to have infrared spectrum during the vibrational motion the dipole moment must change. 

The dipole movement need not be there to start with, but if in the process of vibrational 

motion the dipoles are created and destroyed what you see is that that kind of a motion 

leads to an oscillation of the electric dipole moment and then such molecules will have 

infrared spectrum. 

So, obviously molecules which have a permanent dipole moment will all have an 

infrared spectrum there is no question about that because during the molecular motion 

some of it is during at least some of this motion the dipole moment will change as the 

molecule vibrates and so on. So, let us take the first example carbon monoxide. Carbon 

monoxide has a strong dipole moment. Therefore, it has both microwave and IR 

spectrum. 
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It has CO both microwave and IR spectrum. The next one is CH2 Cl2. This is a 

tetrahedral molecule and it has a permanent dipole moment due to the C Cl bond having 

electrical dipole differently from that of the C H2 and therefore, this molecule also has 

both microwave spectrum and infrared spectrum.  

Carbon dioxide which is the third one; carbon dioxide does not have a permanent a 

dipole moment in it is equilibrium geometry or it is a zero point vibrations. Carbon 

dioxide does not have an electric dipole moment in it is equilibrium geometry therefore, 

it does not have a microwave spectrum, but it has two motions the bending degrees of 

freedom and the asymmetric stretch in both these normal modes of vibration; the 

molecule has a changing the dipole moment therefore, it has the infrared spectrum for 

these two degrees of freedom, the bending mode is doubly degenerate therefore, you 

have degeneracy involved. 

But there two frequencies; one for the bending mode and the one for the asymmetry 

stretch. The molecule ammonium is pyramidal; it has the dipole moment therefore, it has 

both microwave spectrum and infrared spectrum. The molecule formaldehyde, 

acetaldehyde C H3 CHO not formaldehyde acetaldehyde; yes it has a dipole moment 

therefore, there are vibrational motions were the dipole will change during the vibration 

giving rise to both IR and microwave spectrum. Methane is a perfect tetrahedron and in 

it is tetrahedron geometry the electric dipole and cancel to each other and therefore, 



methane the does not have the microwave spectrum, but methane has vibrational motion. 

Please remember it is a five atom molecules therefore, it has 3 n minus 6 normal modes 

which is 9 normal modes some of these normal modes lead to change in the dipole 

moment therefore, it has infrared spectrum. 

The symmetric stretch of CH4 will not have a dipole moment because all four hydrogen 

atoms vibrate away from equilibrium and also go into that. Such modes are not seen, but 

in general it has IR spectrum. 

Benzene; the same thing in it is equilibrium structure does not have a dipole moment 

therefore, it is not microwave active. So, I will write microwave active here and this is 

infrared active here. So, when it benzene does not have a microwave spectrum, but it has 

many degrees of freedom which lead to IR spectrum. 
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Trans dichloro ethane; ethylene so that is Cl C double bond CH Cl H this is given so that 

there is no equilibrium dipole moment. Therefore, this does not have a microwave 

spectrum, but it has IR spectrum. Ozone (Refer Time: 07:15) all the three oxygen’s 

involved please remember ozone is an asymmetric top and this oxygen is differently 

bonded to the other two oxygen therefore, asymmetric top has and this molecule also has 

dipole moments therefore, it is microwave and IR active. 



Acetylene it is quite clear that there is no dipole moment for those linier molecule this 

molecule has a center of asymmetry therefore, it is not microwave active that is 

microwave inactive, but it has vibrational motions therefore, it is IR active. 

Hydrogen peroxide is a non planar structure bending structure and therefore, it is a non 

planar structure therefore, it has a dipole moment therefore, it is microwave active and 

IR active. 
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And the last is propine, C H3 C triple bond CH. So, this has the asymmetry groups C H3 

here therefore, it is both microwave active and IR active. So, one has to look for the 

equilibrium geometry of the molecule and look for the all it is possible normal modes in 

determining, which of them or IR active and which of them are microwave active and so 

on. 
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So, let us go to the second problem. This is an interesting elementary though problem on 

the determination of the moment of inertia of water molecule about it is symmetry axis. 

The symmetry axis of course, passes through oxygen and it bisects the HOH bonds. So, 

the OH bond distance is given to you as 95.7 picometers and the HOH bond angle is also 

given as 104.5 degrees. 
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So, the moment of the inertia if you recall for water molecule if you have to calculate 

about the symmetry axis this is the symmetry axis c2 symmetry axis and since on the c2 



axis; the oxygen resides the oxygen does not contribute to the m i r i square term. r i is 0 

for oxygen because it is on the axis. However, the hydrogens are at this distance which is 

perpendicular from the axis which the perpendicular distance that you have to take into 

account and therefore, you have a mass of hydrogen and since this angle is given has 

104.5 degrees the half angle is 52.25 degrees and the bond length is give as 95.7 

picometers. 

Therefore it is easy for you to calculate this distance as r i as 95.7. So, this is sine 52.25 

that is the r i. Therefore, two hydrogen atoms contribute to the overall moment of the 

inertia for this molecule therefore, this is; this value and since it is a symmetry axis that 

we are talking about hydrogen atom on this side is also r 1 and r 2 are both equal 

therefore, what you have is 2 m H times 95.7 into 10 raise to minus 12 meter square 

times sine square 52.25 and this is kilogram that you have to use therefore, you will have 

the moment of the inertia I in terms of kilogram meter square. I think the numbers can be 

calculated by you for let me not write that here. 

(Refer Slide Time: 11:55) 

 

Let us go to the next problem. The next problem is about to the fundamental vibrational 

frequency of hydrogen molecule and how it is related to the vibrational frequency of it is 

isotopic substituent’s the HD in which one hydrogen item is substituted by the deuterium 

and D2 in which both the atoms are replaced by deuterium and one assumes that in these 

three species the chemical nature namely the force constant which contributes the bond 



strength of these three molecules do not change by much; it is in that limit how are these 

vibrational frequency is related to each other. 
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This is again it is very simple problem to look at because you know vibrational 

frequency for problem three; vibrational frequency is related to the force constant and the 

mass of the molecule that is the center of mass the sorry the reduced mass mu this is the 

expression. Therefore, if you are writing nu H2 is mu of H2 and k of H2 does not change 

from k of HD which is now; obviously related to the mu of HD by the same relation mu 

HD and nu of D2 is given by 1 by 2 pi square root of k mu D2. 

Therefore, if you know this number as 4401.2 centimeter inverse; then you can calculate 

where should the nu HD should be by taking the ratio of this mainly nu HD divided by 

nu H2 will turn out to be 1 by because the case will cancel the two pi's will cancel; you 

will have 1 by square root or let me write the final form the square root of this HD 

therefore, it is mu of H2 divided by mu of HD; they are inversely proportional to the 

square therefore, the ratio is done. 

And mu of H2 is easy to calculate; if you assume H2 to be the H atomic mass as 1.008 a 

mu; if you multiply that by 1.661 into 10 raise to minu27 kilograms that is the amount 

for one a mu; that is how that is the mass of a mu associated with that. Then H2 is the 

reduced mass is nothing, but 1.008, 1.008 divided by 2.016 times1.661 times 10 to the 

minus 27 kilograms. This is the mu of H2. 
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And likewise the mu of HD, if you want to do that please remember the relation m 1 m 2 

by m 1 plus m 2. So, for mu of HD the D is I believe 2.014. So, H is 1.008 times 1.661 

times 10 to the minus 27 kilograms and the D is 2.014 times 1.661 times 10 to the minus 

27 kilograms. Therefore, the mu of HD can be calculated as 1.008 times 2.014 divided 

by 3.022 the sum of the 2 times 1.661 into 10 raise to minus 27. 

So, this is the mu of HD. So, you can see that if you substitute mu of the HD the mu of 

HD is slightly more than the mu of the H2 and therefore, the square root of this number 

tells you that the nu of HD is a little less than the nu of H2. 
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Now, it is a same thing that you have to do for D2; for D2 you would use 2.014 times 

2.014 divided by 4.028 times 10 to the minus 27 into 1.661 kilograms; therefore, the mu 

of D2 is given by this number; then you can calculate nu of H2 the frequency H2 divided 

by the frequency of D2 is the square root of the mu of D2 divided by the mu of H2. 

So, these are simple manipulations of the harmonic oscillator frequencies and also the 

isotopic concepts that vibrational and rotational frequencies do depend on the isotopic 

mass of the individual (Refer Time: 17:20) 
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Then; the forth problem is on the Morse potential and you recall the Morse potential 

expression which is as V of r the potential energy and it is given by the factor D which is 

the dissociation constant times 1 minus e to the minus alpha r minus r e. r e is the 

equilibrium distance. r is the distance during the vibration therefore, this the potential 

term that would you use to solve for the Morse oscillator Hamiltonian. The kinetic 

energy of the Morse oscillator is already given by p square by 2 m and this is the V r and 

therefore, you use this to solve the potential energy. 

Now, the question is; show that in the limit of small displacement that is an r minus r e is 

very, very small that this is the same as the harmonic oscillator approximation and 

identify the harmonic frequency. Also show that the asymptotic value is D. What are the 

interpretations for the parameter for the Morse potential? 
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So, first of all V of r is D times 1 minus e to the r minus r e times alpha whole square. 

So, suppose for r minus r e times alpha much less than 1; it is easy for us to expand this 

by writing D 1 minus please remember exponential of minus a x when a x is much less 

than 1 is 1 minus a x plus a square x square by 2 minus and so on. We are looking at 

small values this therefore, we stop with that. So, what we have is D is equal to 1 minus r 

minus r e alpha and also there is a 1 plus 1 because the exponential has 1 minus that. So, 

if we stop with that term just the first term and take the square of this term which is 

already a very small one we do not even go to the second term; then what you see is it is 



D into r minus r e whole square and please remember this is the potential energy form 

and for the harmonic oscillator the potential energy form half k x square or in the 

notation of r minus r e it is half k r minus r e whole square. 

Therefore you see that the alpha there is an alpha here therefore, this is an alpha square. 

So, D times r minus r e square times alpha square is approximately the potential V of r 

for small values of r about r e. 

(Refer Slide Time: 20:33) 

 

So, what you have is D alpha square is equal to half k and therefore, alpha is given as 

square root of k by 2 D. So, this is the Morse oscillator parameter and please remember 

the Morse oscillator parameter has a dimension by 1 by the length and k has the 

dimensions mass into this is a force constant therefore, it is mass T to the minus 2 and 

this is energy which is mass into length square into T to the minus 2 therefore, the square 

root of this is 1 by length. 

So, the interpretation of alpha is that if this k the force constant is basically 2 D alpha 

square. Now the next question is what is the harmonic frequency? 
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Please remember the harmonic frequency is 1 by 2 pi into square root of k by mu and for 

the Morse oscillator we just now found that k is given by 2 D alpha squares. Therefore, 

the Morse oscillator frequency in harmonic limit will be 1 by 2 pi square root of 2 D 

sorry this is alpha square not subscript 2 D alpha square therefore, 2 D alpha square by 

mu. So, the Morse parameters D and alpha and the reduced mass of the molecule or you 

used to define the harmonic frequency in the limit of small approximation. 
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And second question in that is show that the asymptotic value of V r is D. Now try to 

plot V r as a function of r minus r e. It is D 1 minus e to the minus alpha r minus r e 

whole square. At r is equal to r e the exponential has 0 exponent and therefore, it is 1 and 

therefore, 1 minus 1 is 0. So, the V of r is 0 this is V of r therefore, V r is 0 at r is equal to 

r e.  

For all values of r greater than or e this number is smaller than 1 and therefore, this 

number is positive 1 minus e to the minus alpha r minus r e equal whole square is 

positive and since this keeps on becoming I mean this become smaller and smaller what 

happens is this keeps on increasing until it reaches the maximum value of a D. When r 

minus r e is so large that this exponent is almost 0 because (Refer Time: 24:11) 

exponential of minus alpha x and if x is very, very large then the exponential of minus 

alpha x goes 0 therefore, you see that the V r reaches an asymptotic values and this 

asymptote. 

Therefore the D is the value for infinitely large r e or r compare to r e and when r is less 

than r e; please remembers this is negative and therefore, the exponential is a positive it 

has a positive exponent therefore, the exponential increases and this is the square. So, 

one minus this is negative, but this square of the that still increasing therefore, you see 

this increase very, very quick very, very steeply this is the shape of the Morse potentially 

in which the D is the dissociation energy from equilibrium. 

You cannot measure D you can only measure the dissociation energy from the zero point 

energy; experimentally zero point energy will be the first V is equal 0 state and that will 

still have some energy namely half h nu if you remember that the nu being the harmonic 

frequency and therefore, this number in Morse oscillator called is D e dissociation 

energy from equilibrium, but the experimental values are D naught which is this number 

from zero point energy that is D naught. So, this is how interpretation for the Morse 

potentials are given for their parameters. 

.So, let me stop here for a movement and we continue with the remaining five or six 

problems in the next part of this video. 


