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Welcome, to the lectures in Chemistry and the topic of Atomic Structure and Chemical

Bonding.
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My name is Mangala Sunder and I am in the Department of Chemistry as a professor and

also in the Indian Institute of Technology, Madras. My email coordinates are given here

for you to contact.
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The topic today is the beginning of a series of lectures on angular momentum at the

introductory  level  and  in  quantum  mechanics.  Angular  momentum  in  quantum

mechanics is not a visualizable quantity. Like the way we visualize rotational motion or

we visualize the tops that we play with, those are all visual representations for classical

objects.

In quantum mechanics angular momentum is a property is a fundamental property of the

system and it was first discovered in the spectra of hydrogen atom when the spectral

lines split into doublets in the presence of a magnetic field for the hydrogen atom. The

theory  of  angular  momentum  was  of  course,  put  forward  by  the  famous  physicist

Wolfgang Pauli and the experiments for the basis of the theory were given by Uhlenbeck

and  Goudsmit  around  1925  –  27.  The  same  time  quantum  mechanics  was  being

formulated by several scientists.
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Now, let us not get to the history of it we will do that later, but get to the operational

principles of angular momentum for the purpose of the atomic structure and chemical

bonding for the electron spin angular momentum is a fundamental  property and it  is

usually  written  as  by the symbol  spin  angular  momentum by S.  The orbital  angular

momentum which probably was introduced in a cursory way earlier in hydrogen atom for

the electron is often denoted by the symbol L.

And, then  the total  angular  momentum of the electron  which is  the sum of  the two

vectors L and the S is denoted by the symbol J. These are conventions in textbooks and

in the usage in the literature. Now, this lecture will start with the definition of angular

momentum and in the next lecture what we would do is to describe the commutation

relations in detail for various angular momentum operators.
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The experimental evidence that angular momentum is quantized, quantization that came

from the famous experiments of Stern and Gerlach. A brief summary is that if beam of

silver atoms when pass through a magnetic field which is inhomogeneous, the field at

various  points  between  the  two  magnets  are  different  for  different  points,

inhomogeneous.

When a beam of silver atoms is passed through the inhomogeneous magnetic field H, the

beam splits into two parts and you can see two intensity patterns and this was the first

indication that the angular momentum of the electron is quantized and the spin could be

calculated to be h bar into root 3 by 2 the magnitude and it was also found out that these

two would have a component of the magnetic mode the angular momentum as h bar by 2

minus h bar by 2 that is plus or minus half in units of h bar.
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Classically all of you know that the angular momentum is given by L, is given by the

cross product of the position vector and the momentum vector of a particle, going around

some point the position vector is at any point is given by r and the momentum is of

course, tangential to the point of motion and the cross product of the two is represented

in  classical  mechanics  as  angular  momentum.  And,  the  direction  of  the  angular

momentum is if in the plane perpendicular to the plane of r and p, because any way you

remember the cross product of two vectors is in the direction perpendicular to the plane

containing the two vectors and we use the right handed coordinate system to actually

describe the directions.

Now, for if the system is moving this way around the point and this is r cross p then you

see it is this and this. The cross product of the two when you go this will be pointing up.

This is a classical definition, in quantum mechanics we use this definition to characterize

angular  momentum  components,  but  with  the  additional  restriction  that  not  all

components of angular momentum can be measured simultaneously. L for example, as a

vector  in  classical  mechanics  is  given  by  the  three  components  in  a  3-dimensional

coordinate system L x, L y and L z in some axis system x y z. The square of the angular

momentum is L dot L and that is given by L x square plus L y square plus L z square.



And, the precise direction of the angular momentum can be visualized, is known and you

will have complete knowledge of the components of angular momentum L x, L y, L z all

of this is true in classical mechanics or classical systems which behave classically.
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However,  the  quantum  mechanical  angular  momentum  or  the  electron  angular

momentum is not a classical quantity obviously, and it is not possible for us to write the

spin angular momentum S x, S y and S z components simultaneously. They cannot be

simultaneously measured exactly. What can be measured experiments tell us that we can

determine the S square and one component; S square is the square of the magnitude of

the angular momentum of S and one component of S which is usually written as the z

component  by saying that  the direction  of the angular  momentum is chosen and the

component of the angular momentum in that direction. Usually it is done by associating a

magnetic field or an electric field to the system.

But,  there  is  a  specific  directional  axis  about  which  the  angular  momentum  has

component S z and the magnitude of the S which is given by the square root of the dot

product  S dot  S the same thing for  L orbital  angular  momentum,  L square and one

component of angular momentum can be known simultaneously. And this is generalized

by, you can do it in two ways this is generalized using a Cartesian representation for the

angular momentum in spherical polar coordinates, but that the representation is limited to

integer angular momentum.
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Integer values for angular momentum whereas, such a Cartesian representation the polar

angle representation cannot be given for the spin angular momentum which is a purely

quantum mechanical quantity and the basis set for spin angular momentum is known as a

spinner. These have theta phi integer values of angular momentum they all can be the

Eigenfunctions of the operator angular momentum square operator can be given theta phi

representation  namely  polar  coordinate  representation  this  is  for  the  L,  but  not

necessarily for the J not necessarily for the S. The Eigenfunctions of S are known as

spinners.

Therefore, we have a limitation in the visualization. If this is not sufficient you have the

next additional property that the S z itself does not have arbitrary values, but only two

possible values for a spin a half system. S z for a spin one half system has only two

possible values plus or minus h bar by 2 and the S square for the spin a half system has a

value 3 h bar by 4. You see therefore, the square root of it is root three h bar square root 3

by 2 h bar and the magnitude of the angular momentum therefore, is not equal to the

component of the angular momentum, but it is greater.
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The  magnitude  of  the  angular  momentum  is  greater  than  the  largest  value  of  the

component of the angular momentum which means that angular momentum does not

point in the direction of the z; is not in the direction of z axis or whatever the component

of S z. So, this defines an axis the angular momentum does not point in the axis. So, the

representation  is  done,  if  this  is  the z  axis and if  you write  to the magnitude  of the

angular momentum as S, which is the length of this vector this is root 3 by 2 h bar and

the maximum value of the component of the angular momentum this one is h bar by 2.

Therefore, you see that there is an angle theta such that cos theta is 1 by root 3 or 3 cos

square theta minus 1 is equal to 0. The other possibility minus h bar by 2 corresponds to

an angular momentum vector orientation of this form, giving you the minus if this is the

0, this is minus h bar by 2. But, even writing the vector this way is not a correct thing

because  the  vector  does  not  point  in  this  direction,  but  it  is  anywhere  in  the  plane

perpendicular  to that,  if you take the projection of the this S into the plane then the

angular momentum vector pointing in this direction is also half h bar.

Therefore, what you see is that you cannot simultaneously give the S z values as half h

bar and then the S axis is either this or S y is that the average. This is going to be later

studied as a precessional characteristics of angular momentum in a magnetic field of S in

a magnetic field. All of this is to only if S is in a certain chosen field, if the field is not

there then the angular momentum can point in any arbitrary direction and in a beam of



silver atoms one would expect that different atoms have the angular momentum pointing

in different directions and therefore, when you pass it through a magnetic field which has

radians the magnetic field gradient introduces what is known as a torque and the torque

results in the deflection of the magnetic moment in various directions.

Therefore, if the magnetic moment points in all the directions the torque will be such that

the reflections the deflection happens in all the directions and therefore, you would see a

beam with intensities on the entire detector all the entire range of the detector, but you do

not see it, what you see here is exactly two beams as was first drawn. So, this was the

first indication that angular momentum is quantized with respect to a chosen field and

the quantization the angular momentum also means that there are only finite number of

components  which  we  will  later  call  as  the  eigenvalues  for  the  angular  momentum

operator  in  that  direction  and,  the  finite  number  is  such  that  for  a  spin  angular

momentum you have two components.
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And, for orbital angular momentum you have, for any L if we write for orbital angular

momentum we have the L and the L z. L z and the L square such that L z can have the

maximum value of l h bar, l minus 1 h bar which is with these are all the possible values

of the z component of the orbital angular momentum or any integer angular momentum

with L equal to 0 or 1 or 2 or 3 whatever and then you have up to minus l minus 1 h bar



and minus l h bar. So, there are 2 l plus 1 L z values for any and the L square, the

magnitude of the L square is l into l plus 1 h bar square.

So, this is the introductory remark on the angular momentum that one it is quantized and

two the angular momentum components do not or do not commute among themselves

and therefore, they cannot be simultaneously measured and let me close this part and

continue  the  actual  mathematics  in  the  next  part.  The  components  of  the  angular

momentum L x, L y the commutator is not 0, L x, L z the commutator is not 0 and L y, L

z. And, the same thing can be written for S x and S y S x and S z, S y and S z they are not

0, but what is 0?

(Refer Slide Time: 17:06)

What  is  0  is  the  square  of  the  angular  momentum S square  commutes  with  all  the

components the square S y and S square S z all are 0. Let us see these relations in more

detail and then evaluate the properties of the spin angular momentum in the next part

until then. 

Thank you very much.


