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Variational Principle in Quantum Chemistry: Linear superposition Principle

Welcome  back  to  the  lectures  in  Chemistry  and  the  topic  of  Atomic  Structure  and

Chemical  Bonding.  My  name  is  Mangala  Sunder  I  am  from  the  Department  of

Chemistry, Indian Institute of Technology, Madras.
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My email coordinates ids are given here for you to contact me for any clarification ok.
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The set of lectures beginning today this lecture or this is on the Variational Principle in

Quantum Chemistry and we will  do it  only in quantum chemistry we look at  it  non

mathematically  as  much as possible.  And this  lecture  title  is  Linear  superposition  of

wave functions Principle. The subsequent lectures will provide you more details on the

variational principle as well as some examples elementary examples from chemistry.

 We will see what linear superposition principle means in our context.
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The objective in quantum chemistry is of course to solve the Schrodinger equation, time

independent most of the time H psi equal to E psi. And any such solution if we are able

to do gives you a series of solution psi ns and energy is E ns where n can be 0; as in the

case of harmonic oscillator 1 2 3 etcetera or n can be 1 2 3 etcetera; it is some quantum

number set. Finite or infinite ok; let us first look at finite case finite number of solutions.

So, what it means is that H on psi n is E n on psi n.

Now, these are eigenstates; however, if the system is not in an eigenstate and for some

reason we are able  to find out the eigen states of the system; then the arbitrary non

eigenstate  of  the system is  represented  as a  superposition of  all  the eigenstates  with

coefficients a n; where n runs from 1 to some finite number.

Let us call it as k or whatever or let me do the following try to the overall wave function

as sum over k is equal to 1 to n; psi k with some linear combination coefficients C k.

Usually this wave function psi ns which are eigenfunctions can be chosen as or often or

orthogonal to each other. So, that you have psi n star psi n d tau is delta nm; therefore,

using this orthogonality if we want to normalize this wave function; then we have psi star

psi d tau is equal to 1 gives you the condition that the sum over the coefficients absolute

square for all the values 1 to n, C k square is equal to 1.

So, this is it is a very straightforward integral to obtain.
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And I think I have discussed this enough in the previous lectures that I would assume

that we use this condition that the coefficients are such that the absolute square C k is the

probability that the system will be found in the state psi k will be found in the state psi k,

if we have to make a measurement of the energy of the system and also the energy E k,

the C k square gives you the probability.

The linear superposition is this one; now there are; obviously, many problems in fact,

most of the problems in quantum chemistry. We do not know the psi ns that you see here

will be write then down; we do not know the psi ns and our job is to first find out these

psi ns. And if the state of the system is also arbitrary then what is the best description that

we can provide for the state of the system and how do we obtain these eigenfunctions

and the eigenvalues.

For this process, normally what one does is to choose a for every problem a suitable

basis set of functions which we shall call them as phi k a full set k is equal to say 1 2 3;

let us do a finite set k is equal to 1 2 n.

This is not an eigenfunction in the sense H on phi k is not equal to E k on phi k, but H on

phi k gives you something else some chi; some other function. Therefore, using the fact

that we can calculate the effect of the Hamiltonian on phi k because we know phi k, we

know  the  Hamiltonian  which  is  also  a  derivative  operator  and  the  potential  energy

operator. Therefore, it is possible for us to actually find the action of H on phi k; it will

give you something probably different from the eigenfunction of the function itself.
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In that case,  if  we write the arbitrary state  of the system using a linear  combination

coefficient set C k phi k and k is equal to 1 to n; this is the best that we can do; if psi ns

where not known. Apart from all the model problems that I have solved already; the psi

ns are generally not known for most of the problems. Therefore, we have to choose an

arbitrary set of basis functions with preferably; we will have the basis functions phi k star

phi l d tau whatever is the space available to the system; if it is 3 dimensional this will be

some volume element.

And then the integral will tell you the entire volume in which the system is studied given

that we probably would like to have a phi k star phi l is equal to delta k l. It may not also

be possible to have these kind of functions if he chose certain types of functions; in

which case phi k star, phi  l  d tau will  be called  S k l  or overlap between the basis

functions.

S k l is not 0, but we can always have S k l k k chosen to be such that it is 1 because

these functions can be normalized. Therefore, if k is equal to l whatever that integral is

called as kk we can choose it to be 1 ok.
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Let us first do the case where the study the case where phi k star phi l d tau is actually

delta k l and see how this helps us to turn the Hamiltonian equation the Schrodinger

equation H psi is equal to E psi into a matrix equation into a matrix eigenvalue equation.

So, to do this let us do the following algebra let us assume that the wave function psi is C

1, phi 1 plus C 2 phi 2 plus C n phi n. We know phi 1s, phi 2s phi ns etcetera because we

have chosen them, but do not know the Cs; our objective is to find what they the Cs do

not know the Cs the Cis right our objective is to find them.
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Therefore, if we write H psi is equal to E psi if we write this it is H on C 1, phi 1 plus C 2

phi 2 plus C n phi n is equal to E on C 1, phi 1 plus C 2 phi 2 plus plus C n phi n to turn

this  into  a  matrix  matrix  equation;  let  us  do  the  integration  by  first  multiplying

everything by phi 1 star and integrating with respect to the volume element and over all

the space.

See over all space here means that for example, if you did the particle in the box the box

land 0 to l; that is the integral limit. If it is a particle on a ring it is the value of the angle

angular coordinate namely 0 to 2 pi; that is a limit. And in the case of hydrogen atom is

the entire 3 dimensional volume xyz all going from minus infinity to plus infinity or the r

theta phi in the hydrogen atom having all those values. So, this is what it means over all

the space that is available to the system and the volume element is dependent on the

dimension of the system that we have.

So, if we do this phi 1 star; then you can do the same thing on the right hand side the phi

1 star  E C 1 phi 1 plus C 2 phi  2 plus C n phi n d tau.  Now the left  hand side is

essentially phi 1 star; H phi 1 integral d tau times C 1 plus integral phi 1 star H phi 2 p

tau times C 2 plus and so on.

You have integral phi 1 star H phi n; d tau C n and that is equal to E times the first one is

of course, the phi 1 star phi one is a normalization integral and therefore, it is a constant

C 1; that is a result. And the rest of it phi 1 star with phi 2; phi 1 star with pi 3 remember

we chose the functions to be orthogonal to each other I have chosen that here; they are

orthogonal. Therefore, all the other terms will go away from the right hand side and what

you will have is only this. The left hand side each of this integral can be labeled as the

matrix element of the Hamiltonian with respect to this ordering of the basis functions

from 1 to n.

So, the first one is 1 1 C 1 plus the second one is 1 2 C 2 plus H 1 3 C 3 plus H 1 n C n is

equal to E C 1, There is nothing specific about phi 1 star integration on this equation; we

might as well do the same integration with phi 2 star and phi 3 star. And on the left hand

side  you will  you see  what  we will  get  is  the  corresponding  matrix  element  of  the

Hamiltonian; if you do it with the phi 2 star, you will get a H 2 1 and you will get a H 2

2; you will get H 2 3 and so on.



But on the right hand side what you would see is that if we do it with phi 2 star this

integral  phi  2  star  keeps  only  the  phi  2  term and  all  the  other  terms  are  0  due  to

orthogonality therefore, it becomes E C 2.
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So, let me write that as the second equation H 2 1 C 1 plus H 2 2 C 2 plus H 2 3 C 3 plus

H 2 n C n is equal to E C 2. And therefore, now you can write likewise n equations

namely H n 1 C 1 plus H n 2 C 2 plus H n 3 C 3 plus plus H n n C n is equal to E C n.

Now, you can see immediately that this is nothing but a linear if you take the C 1 on this

side  this  is  becomes  a  linear  homogeneous  equation  with  the  coefficients  which  are

undetermined namely C 1 C 2 C 3 C n etcetera. So, what is that equation? If we write

this as a matrix equation it is H 1 1 minus E times C 1 right and H 1 2 H 1 3 so on H 1 n

and it C 2 C 3 C n that is equal to 0.

And likewise H 2 1 H 2 2 minus E H 2 3 this is H 2 2 minus E because of C 2 H 2 3 H 2

n and if we try to all the n equations you get H n 1, H n 2, H n 3, H n n. Now very often

we choose the functions to be a real and therefore, these coefficients are the Hamiltonian

coefficients are matrix elements are all real and if we restrict ourselves to this point to

real  matrix  elements  H  ij  then  you  know  that  H  being  a  Hermitian  operator  or  a

symmetric operator here H ij is equal to H ji.
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Therefore, you can see that the equation comes down to very simply H 1 1 minus E H 1

2 H 1 3 H 1 n; C 1, C 2, C 3 to C n is equal to 0.

And this will be also H 1 2 H 2 2 minus E H 2 3 on the way up to H 2 n H 1 3, H 1 4 and

likewise H 1 n, H 2 n, H 3 n up to the last line H n n minus E equal to 0. So, the

Schrodinger equation in the case of the unknown eigenfunctions assumes the form of

using some known basis set functions.

The basis set functions are chosen carefully for different problems in different ways. The

whole art of quantum chemistry is the right choice of the basis functions and also in

almost all the cases, the basis functions are never finite I mean in principle there are

infinite  basis  set  functions.  Therefore  the  generalization  of  this  to  the  real  matrix

eigenvalue problem of quantum mechanics is direct and also immediate.

But  you have turned the simple  Schrodinger  equation;  we have differential  equation

containing the derivative operators in the Hamiltonian to that of solving a differential

equation to a solving a matrix eigenvalue problem. Because you see the determinant of

this  matrix  has  to  be  0  as  this  is  nothing,  but  a  linear  homogeneous  equation  in  n

coefficients which are constants.
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Now the determinant of this if it is 0 it is going to give you a polynomial of E raised to n

as the leading term and therefore,  there are generally n solutions; n eigenvalues E 1

denoted as E 1, E 2 E n.

For each eigenvalue E you will have a column vector E 1, you will have a column vector

C 1, C 2, C 3, C n, but this column vector is unique to the eigenvalue E 1. So, let us

denote this as the following that if this is C 1, C 2 1, C 3 1, C n 1; where the second label

1 is the one to correspond to this energy eigenvalue E 1 and the C 1 C 2 C 3 the first

label gives you the actual column vector.

Likewise for E 2 the eigenvector is going to be C 1 2 C 2 2 C 3 2 and so on and so you

will  have  C  n  2.  So,  you  have  all  the  eigen  values  and  all  the  eigen  vector

correspondingly C 1 n C 2 n C 3 n up to C n n. So, the solution of the Schrodinger

equation therefore, is that of the n by n matrix eigenvalue problem.

Now if the n is very large and if the n is infinite; obviously, the solution cannot be done

even in the computer programming; using computer programming and using numerical

methods it cannot be done. Therefore, we have to now find out what is the best basis set

how many function basis functions that we have to choose and therefore, a whole lot of

techniques come in.



Variational theorem is the starting point for the eigenvalue proposition and eigenvalue

the problem of the Schrodinger  equation;  in  that  it  puts an upper bound on the best

possible solution that you can have. And that upper bound is the starting point that we

usually called the exact solution to the ground state. And the variational method gives an

exact upper bound to the calculation of the eigenvalue problem.

And any trial function that we can choose, any basis set that we can choose a trial basis

set will never give you the exact lowest solution, but it will approach that. So, we will

see the actual variational principle, but this as the background in the next lecture.
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But let me complete this lecture with the possible case that the basis sets phi k phi l star d

tau or not 0 even if k is not equal to l that is there is there is an overlap if you define this

as  S  k  l.  How  does  this  equation  change?  This  one  ok;  we  have  integrated  the

Schrodinger equation H psi is equal to E psi using phi 1 star. And the term that we had

kept is phi 1 star C 1 phi 1 E because phi 1 star phi 2 integral d tau is 0 and all these

things are, but if they are not 0 each one will be denoted as a an overlap integral s 1 2 in

this case s 1 3 in the next case s 1 n and so on.

So, let me just write down the 1 or 2 equations and the little generalize the matrix namely

the integral phi 1 star H on C 1 phi 1 plus C 2 phi 2 up to C n phi n or some arbitrary n d

tau is equal to the integral phi 1 star times E and C 1 phi 1 plus C 2 phi 2 plus C n phi n d

tau.



And the equation is C 1 H 1 1 plus C 2 H 1 2 plus etcetera up to C n H 1 n is now equal

to E the first one is C 1; the phi 1 star phi 1 d tau can always be chosen to be normalized;

so, therefore, that is 1. And then you have plus C 2 S 1 2 plus C 3 S 1 3 up to C n S 1 n

ok.

So, the same thing will  happen for all  the other equations that  we have obtained by

multiplying by phi 2 star or phi 3 star or any of them phi and so on there are n equations

similar to this one there n equations. And the n equations will all have the SS coming in

and therefore,  what  happens to  this  matrix?  This matrix  gets  modified  by default  as

follows; it gets modified into minus E S 1 2 minus E S 1 3 minus E S 1 n.

So, let me now write that.
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You have H 11 minus E S 11 which is of course, 1 then you have H 1 2 minus E s 1 2 H

1 3 minus E S 1 3 you have H 1 n minus E S 1 n. And the second equation will be H 1 2

minus E S 1 2; again for real functions phi 1 star phi 2 or phi 1 phi 2 star they are both

the same; therefore, you see that the overlaps are the same.

And you will have H 2 2 minus E H 2 2 minus E S 2 3; H 2 3 and so on H 2 n minus E S

2 n. And if you complete this it is H 1 n minus E S 1 n; H 2 n minus E S 2 n; H 3 n minus

E S 3 n all the way up to H n n minus E; this matrix multiplied by C 1, C 2 C n this is 0.



So, the modification is that that you will have all the minus E S terms minus E S terms

minus E S term everywhere this what this what and this what you can see that. So, the

solution of the Schrodinger equation is either solving this one if the basis functions are

chosen in a manner that; they are not actually orthogonal to each other or if the basis

functions are chosen and they are orthogonal to each other solving this equation without

the solving that.

So, this is the matrix eigenvalue problem and this is the direct result of assuming the

wave function to be a linear superposition of some unknown that whose properties we

understand.  And  whose  integrals  we  can  calculate  we  use  that  as  a  basis  function

therefore, the intelligent choice is to find the right set of basis function closed to what are

possibly the eigenfunctions.

Of course, the eigenfunctions are what we want and the eigenvalues are what we are

always looking for in the next lecture let me introduce the variational theorem with this

as the background. And we will tell  you a little bit about how to apply the variation

theorem for  some very elementary  problems.  The entire  quantum chemistry  program

today depends so much on the fundamentals of variational principle; that it is important

for us to follow through this in the course even in an elementary way. We will meet the

next time with a little bit of introduction to the variational principle until then.

Thank you very much.


