
Chemistry Atomic Structure and Chemical Bonding
Prof. K. Mangala Sunder
Department of Chemistry

Indian Institute of Technology, Madras

Lecture - 06
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Part II

So, let us assume the matrix multiplication here, I have given an example on the screen,

which are fundamentally important for this course also.
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Therefore,  I have chosen these special  matrices  called  they are called  the  Pauli spin

matrices  in  honor  of  professor  Wolfgang Pauli, who  first  introduced  them  in

understanding. In our understanding of the spin quantum number and as a property of

the, systems nuclei and electrons and other particles ok.

So, you have the x component, this is called the x component of the Pauli spin operator.

It is a 2 by 2 matrix, the y component of the Pauli spin operator, which is the 2 by 2

matrix, but it has an imaginary quantity, i and minus i and i and the imaginary numbers

of course, you, you know the algebra of all the imaginary, complex numbers. You know i

is defined as the square root of minus 1 and likewise, i square is minus 1 therefore, and

likewise minus i whole square is also minus 1 i into minus i is 1 ok. Keep that property



in by i mean keep this in mind and then you have sigma z, which is the z component of

the Pauli spin operator with the 1 0 0 minus 1, this is a diagonal matrix. 

It is diagonal matrix, because it has all the off diagonal elements to be 0. It has non-zero

elements, only  along the  diagonal. Now, these matrices  obey very  special  properties

called anti commutation rules, in the sense that if you take the product of the matrix

sigma x sigma y and then take the commuted product sigma y and sigma x and add them,

find  out  what  answer  you get  and there  are  three  such commuted  properties, which

involved x y y x y z z y z x x z. So, it is sort of cyclically x y z. So, it is like x to y to z

and if you take the differences between those matrices, you will also find that, these

matrices  do not commute with each other sigma x does not commute with sigma y.

Therefore, the difference is non zero. The answer is actually 2 i sigma z ok. 

In this  case  and likewise you can find out the other answers also determine sigma x

squared, sigma y square and sigma z squared, you will find out that these are nothing, but

identity matrices 3 times, the identity matrix 2 by 2 ok. So, these properties are important

therefore,  even though it is  matrix  multiplication  and elementary  things, please  keep

some of these special matrices will keep coming again and again ok.
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Now, let us move to the next property of the matrices. Particularly the property of the

square matrix ok, a square matrix is one in which the rows and columns of the matrices

have the same number. There are 2 by 2 3 by 3 4 by 4. It is not square matrices can have



what  are  called  the  determinants  and  the  determinant  is  something  you  are  already

familiar with for any array. If you have a b c d as a matrix, the determinant is written by

the symbol and that is a d minus b c which is n number. 

So, let us calculate the determinant of a 3 by 3 matrix 0 1 0 1 0 1 0 1 0, you can see in

calculating the determinant, please recall your high school or the previous mathematical

mathematics that you studied, that you can expand the determinant along any given row

or along any given column. So, let us expand this, along the first row. If we do that it is 0

times the, if you do 0 then it is the cofactor of 0 is 0 1, which is, which is called a minor

0 1 1 0. And since, you go to the second element, the sum of the indices row plus column

index is odd. This will be a minus sign and you will see that it is 1 times 1 0 1 0 and the

last 1 is 0 times 1 0 0 1. 

So, if you take any element 0 for example, then all you would do is, in doing the matrix

multiplication, you will delete that row and you will delete that column and. So, the rest

of it is 0 1 1 0, which is what is here and in the same way the minor of 1 will be deleting,

deleting  this  column  and  this  row.  So,  what  is  left  over  is,  sorry  not  this  one  in

determining the minor of 1, you will delete this column and this row. So, what is left

over is 1 0 1 0, which is what is here of course, the answer for this is 0, if you do a

matrix such as this 0 0 1 0 1 0 1 0 0, if you want to calculate the determinant of this

matrix, then it is clear that the first two are 0. 

So, you do not need them and the last one is plus 1 times whatever is the minor and the

minor is minus 1. So, the determinant of this matrix is minus 1. And you can also verify

that the determinant of A B C is the determinant of A B times C, because you know that

matrices obey the associativity determinant of is also, it also follows the same properties.

Now, there are matrices for which the determinant is 0. 
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And these are called singular matrices, the singular matrices are such that if you want to

define an inverse for the matrix A suppose, you have a matrix a b c d and an inverse is to

be defined, A inverse the property of the inverse is that A times A inverse is the identity

matrix and it is the same thing as a inverse and a. So, in that sense they commute ok.

This is the property of the inverse.

Therefore, if A is of a b c d and you want to calculate A inverse and let us write this as p

q or s then A, A inverse would be a b c d multiplied by p q r s and that should give me the

identity matrix namely 1 0 0 1. And since this is a matrix the elements of this matrix

should be the same as the elements of this matrix. So, let us calculate them, it is a p plus

b r that is the first row first column then the first row, second column is a q plus b s

likewise c p plus d r and c q plus d s this should be 1 0 0 1. 

 (Refer Slide Time: 08:31)



Given this, you can immediately see that the element a q plus b s is 0 and since we are

interested in finding out p q r s in terms of a b c d which we know. So, we can write q is

equal to minus b s by a and likewise, this element c p plus d r is equal to 0 and. So, I will

write p is equal to minus d r by c we also have the property that a p plus b r is equal to 1

and since we know that p is minus d r you have a times minus d r by c plus b r is equal to

1. So, this gives you immediately minus a d plus b c times r is equal to c. So, what is r ; r

is c by b c minus a d and once you know r, you can immediately find here.  Since r is

connected to p, you can immediately find p.

Therefore, you determine p you determine similarly, q and you determine s. What is the

final answer, the final answer will turn out to be  1 by a d minus b c times.  The final

answer is 1 by a d minus b c times the matrix d minus b minus c a . It is easy to verify

that if this is A inverse then A into A inverse actually gives you, the matrix 1 0 0 1 ok.

Now, what is important is this factor a d minus b c please note that a d minus b c for this

matrix is nothing, but the determinant of a therefore, it should not be 0.
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Therefore, for  inverse  to  exist  the  matrix  should  be  non singular.  For  inverses  of  a

square, of square matrices determinant should not be 0, matrix should be non-singular in

my lecture, notes.  Of course,  I will  give  you a very clear  formula for inverses of a

general matrix in terms of what are known as the determinant as well as the cofactors of

each elements, but here we have seen that. So, likewise it is easy to, calculate inverses

and inverses  are  very  important,  wherever  they  exist  the,  it  is  important  to  find  the

inverse and associate the properties of the inverse with certain types of matrices.

In the next and the final, the part of this particular lecture; I shall introduce you a few

special  matrices, in  which  inverse  will  have  a  critical  role  ok. Now, a  matrix  is  a

symmetric matrix, if the element a i j is the same as the element to a j i that is the matrix

a 1 1 a 1 2 a 1 3 a 2 1 a 2 2 a 2 3 a 3 1 a 3 2 a 3 3, if you write this as a matrix , this a will

be symmetric; If the transpose of the matrix, which is obtained by transposing the rows

and columns of any given matrix is equal to the matrix itself. 
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Therefore, a symmetric, if you have a 1 2 and a 2 1 or the same, a 2 1 likewise, a 1 3 and

a 3 1 are the same and a 2 3 and a 3 2 are the same. That is also easy to see, because the

transpose of this matrix a 1 1 a 1 2 a 1 3 a 2 1 a 2 2 a 2 3 a 3 1 a 3 2 a 3 3. You take the

transpose of this matrix, you are basically transposing this, column into a row or this row

into a column. So, let us take this row, then it becomes for the first row becomes the first

column a 1 3, the second row becomes the second column a 2 3 and the third row a 3 1 a

3 2 a 3 3 ok.

If this where to be equal to the original matrix a 1 1 a 1 2 a 1 3 2 1 a 2 2 a 2 3 a 3 1 a 3 2

a 3 3, then you see that there is no problem with the diagonal elements, because they do

not, transpose themselves. They are all equal, but a 2 1 should be a 1 2 and a 3 1 should

be a 1 3 and a 2 3 should be a 3 2, which is what I have written here. So, this is required

if  A t  is  equal  to  A. Now, this  is  for  symmetric  matrices. Now, if  the  elements  are

complex, you  would  see  that, we  can  define  in  a  similar  way, what  is  called  the

Hermitian adjoint. 

The Hermitian adjoint of any matrix a is denoted by of any a is denoted by the symbol, A

dagger and if  the matrix  of A is  denoted by the elements a i  j  then A dagger is the

elements of the matrix A transpose star, transpose complex conjugate. Therefore, if you

write A dagger i j is a j i star ok. There matrix is transposed and it is complex conjugate,

this  is  the element, this  is  defined as A  Hermitian adjoint  of A. It does not  tell  you

anything about, whether A is the same as Hermitian adjoint of A dagger that is A is equal



to  A dagger. It does not  tell  you anything that  for every matrix  A, we can define  a

Hermitian adjoint.

If the element is real then the Hermitian adjoint is given by the transpose of the matrix,

the elements of the transpose of the matrix, a matrix is Hermitian only if A is equal to A

dagger then we say A is Hermitian, in the same way we say, when A is equal to A of t, we

say A is symmetric. 

So, the Hermitian includes complex numbers and therefore, the complex conjugation is

important in the definition Hermitian adjoint and Hermitian matrices that is in matrices

for  which  the  matrix  and  it is  Hermitian adjoint  are  equal. They are  fundamentally

important.  In  fact,  all  observable  quantities  in  quantum  mechanics  in  the  matrix

formulation are represented by a Hermitian matrices actually in mathematical parlance, it

is, they are represented by what are known as the self adjoint matrices.

But for our course, if we keep the, terminology simple and Hermitian matrices are very-

very  important  in  quantum  mechanics  all  eigenvalues  are  eigenvalues  of  Hermitian

matrices that we will eventually, find then the other important property of a matrix other

important type of a matrix is known as orthogonal type. 
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Your matrix is orthogonal, if A is orthogonal. If A T, the transpose of A is equal to the

inverse of  A that is  A A inverse, if it is 1 then it is the same thing as saying A A T is



equal to 1. Since, clearly inverses involved the determinant of A should not be 0, A is not

0. 

In fact, it will turn out to be 1 ok so, because 1 in also determinant of A A T, involves

determinant of A in the denominator. Therefore, you would say that orthogonal matrices

or matrices for which the transpose of the matrix is equal to the inverse of the matrix or

you compute the inverse by simply transposing the matrix. 

So, if I have a matrix like cos theta sin theta minus sin theta cos theta then I know that

the determinant of this matrix is 1, it is cos square theta plus sin square theta minus of

minus sin square theta and the, this  matrix is orthogonal. Its inverse is the transpose

namely cos theta minus sin theta. The first column becomes the first row and the second

column is the second row sin theta, cos theta is A inverse. 

If this is A and this is nothing, but the transpose of the matrix. So, here is a very simple

example for what is known as a transpose and the inverse. These are for real elements, if

you  have  complex  elements, then  1  does not  define  an  inverse  in  this  way  or  the,

orthogonal in this manner, but 1 defines what is known as the unitary matrix. 
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A unitary matrix u is unitary, if u inverse is equal to u dagger the Hermitian adjoint, u is

not Hermitian that is u is not equal to u dagger in general ok. No, therefore, the inverse

of the matrix is the same as u dagger. So, u dagger is of course, you know is u j i star ok .



u i u dagger i j is u j i star the rows and columns are inversed in, I mean transpose and

complex conjugate.

Therefore, this is the same as the u inverse i j. So, the property is u U dagger, which is

the same as u dagger u and that is equal to 1 ok; obviously, all are square matrices. We

are not talking about any other at this point ok. So, this is the identity matrix therefore, if

u is n by n, this will be and an identity matrix of n by n. What is the example of a unitary

matrix? Very simple 1 by root 2 1 by root 2. 

Let me do i by root 2 and then I write 1 by root 2 minus i by root 2, I take this matrix

then it is inverse, if this is u it is inverse is u dagger and u dagger is the transpose of the

matrix 1 by root 2 i by root 2, but also complex conjugate. Therefore, i becomes minus i

for the first column, becomes the first row and the second is 1 by root 2 i minus i by root

2, which becomes plus i by root 2 ok.

If you multiply these two matrices, you will see u U dagger is 1 by root 2 times 1 by root

2 plus this. You will see 1 by 2, that is 1 and the second, column is minus i by root 2.

This i by that is also 0 and likewise this is 0. So, this is u U dagger is 1 0 0 1. So, this is

an example, a very simple example of a unitary matrix in two dimensions is even now,

what I have not said in conclusion, I should state that.
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Orthogonal also means the following orthogonal matrices have columns and rows which

are orthogonal to each other or orthogonal to each other and or normalized. So, if I take

A matrix  a  as  orthogonal  then  the  property  of  this  column  orthogonality,  it is  the

following a 1 1 a 1 2 a 2 1 a 2 2. Please remember the determinant is 1 which is a 1 1 a 2

2 minus a 1 2 a 2 1. This is 1 and the column orthogonal to essentially means column 1,

multiply the element by element within column 2 will give you the answer 0 a 1 1 a 1 2

plus a 2 1 a 2 2 is 0 and likewise the rows will also be orthogonal row. 

Orthogonality will  be  a  1  1 a  2  1 plus  a  1  2 a  2  2 that  is  0. What about  rows by

themselves; a 1 1 square plus a 2 1 square that will be 1 and likewise, a 1 2 squared plus

a 2 2 square will  be 1.  So,  the rows and columns are normalized and the rows and

columns  are orthogonal  to  each other, this  is  for  an orthogonal  matrix  for  a  unitary

matrix. One of the rows that we take in the product of two rows has to be the complex

conjugate of the row itself and therefore, when you say you. 
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Suppose, you write to the matrix u as u 1 1 u 1 2 u 2 1 u 2 2 that is a simple example then

the column orthogonality essentially means column 1 is orthogonal to column 2. So, you

either take column 1 real, but then you multiply with the complex conjugate of column 2

plus u 2 1 u 2 2 star that is 0. 

So, this column multiplied by the complex conjugate of this column is 0. It does not

matter which one is taken as a complex conjugate, because if a number is 0, it's complex



conjugate is also 0. So, if  you take this  row, this  column and you take the complex

conjugate of it, it is still  0. The other thing is the ortho, the normalization essentially

means u 1 1 u 1 1 star plus u 2 1 u 2 1 star that is equal to 1. 

Therefore, unitary matrices are such that the rows and columns are normalized and the

rows and columns are orthogonal, but remember you have to take the, real products for

the row normalization. The real products for the column normalization, but you have to

take the one column or one row to be complex conjugate of the other column, these are

properties of the unitary matrices.

We will have a lot of occasions to see these things in the next lecture and then many

others, but keep these properties in mind. This lecture is pretty long, but this is a fairly

quick revision of some of the matrix  properties. I am sure you have seen and let  us

continue with the, the linear algebraic representation of some of these matrices in the

next lecture. 

And also look at the eigenvalues and eigenvectors for some of these matrices and the

connection  between them and quantum mechanics  in  the  a  few lecture.  So,  I would

believe that this module will have a few of these, lectures together and it is important

preliminary for understanding quantum mechanical calculations in a large scale. We will

continue with the matrix algebra in the next lecture until then.

Thank you very much. 


