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Welcome to advanced geotechnical engineering course. 

(Refer Slide Time: 00:24) 



We are going to commence module 3, lecture 1 on compressibility and consolidation. So this is

module 3 lecture 1 on compressibility and consolidation. 

(Refer Slide Time: 00:42) 

In this module the following contents are outlined, stresses in soil from surface loads due to

different types of surface loads, it can be concentrated load, or it can be line loads, it can be strip

loads, or it can be distributed loads over a certain area or irregular shaped areas loaded with

certain intensity and amendment loading etc. 

And then after having looked into the, you know the stresses in soil from surface loads, we will

try to introduce ourselves to Terzaghi’s one dimensional consolidation theory and application in

different conditions and ramp loading condition that is how the amendment constriction on soft

soil actually happens.

And methods for determining coefficient of consolidation normally an over consolidated soils,

compression  curves  and  secondary  consolidation.  After  having  discussed  with  the  one

dimensional  consolidation,  then  we  will  try  to  look  into  the  balance  theory  of  radial

consolidation.  And  settlement  of  compressible  soil  layers  and  methods  for  accelerating

consolidation settlements.

So how we can actually even accelerate the consolidation settlements, we will try to look into

some advanced methods. So in this particular module 3 and lecture 1, we actually commence



with the stresses and soil from the surface load. We all know that an important function in the

study of the soil mechanics is to predict the stresses and strains imposed at a given point in a soil

masses due to certain loading conditions.

(Refer Slide Time: 02:23)

So always the surface is actually subjected to loading, so in that case an important function is

the, in the study of soil mechanics is to predict the stresses and strains imposed at a given point

in a soil mass due to certain loading conditions. Basically this helps to estimate the settlement

and  to  conduct  the  stability  analysis  of  earth  and  earth-retaining  structures.  As  well  as  to

determine the stress conditions on underground and earth-retaining structures.

So once we know the stresses it helps to estimate the settlements and to construct, to conduct the

stability  analysis  of  earth  and  earth-retaining  structures,  as  well  as  to  determine  the  stress

conditions on underground and earth-retaining structures. 
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If you look into the idealized the stress-strain diagram, in this particular slide the idealized stress-

strain diagram is shown here. The stress is on the vertical axis and strain on the X-axis. And the

zone AB is in the elastic range and zone BC is idealized as plastic. So you can see that at low

stress levels the strain increases linearly with stress and that is the branch AB, which is elastic

range of the material.

Beyond a certain stress level the material reaches a plastic state, and the strain increases with no

further increases in the stress. So in the idealized stress-strain diagram whatever we have shown

here, that beyond a certain stress level the material reaches a plastic state, and the strain increases

with no further increases in the stress. So this is idealized stress-strain diagram wherein, you

know in case at low stress levels the strain increases linearly with stress, which is elastic which is

within the elastic range of the material.
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Now let  us  consider  the normal  and stress  stresses  in  Cartesian  coordinate  system.  Now an

elemental soil mass when you look into it, assume that we are having a small element having

sizes of dx in X direction, dy in Y direction and dz in Z direction. And if σxx and σyy and σzz,

these are the normal stresses acting on the plane X, Y, Z axis. So here it is shown, σxx is the

stress acting in a YZ plane, YZ plane that is the dy, dz area on this small area this σx is acting.

So σxx(dy, dz) is the force, normal force acting perpendicular to that. Then there are shear stress

acting which is shown here τxz, τxy and in this case σzz is shown here, σzz is acting on dx and

dy area. And σyy is acting over dx and dz area, that is X and Z plane. So here we have the, for

convenience only we have shown only three stresses, but in other phases also that is on this

phase, on this phase, on this phase all the other remaining phases there these stress are acting.

So parameter σxx, σyy and σzz are the normal stresses acting on plane normal to X and Y and Z

axis. So consider positive when they are directed onto the surface. If they are directed away from

the surface over which they are acting particularly for normal stress they are treated as intention,

or otherwise there will be in decent compression. So if τij is a shear stress, it means that the

stress is acting on a plane normal to Y axis. And its direction is parallel to J axis. 

So if you look into, let us say a τij, that means that τij is a shear stress and it means that the stress

is acting on a plane normal to the I axis and its direction is parallel to J axis. So for equilibrium

τxy = τix and τxz = τzx and τyz = τzy, so if you look into the CTL formula for equilibrium τxy =

τyx and τxz = τzx and τyz = τzy. 



(Refer Slide Time: 07:00)

Now let us look into deducing the equation of static equilibrium. So consider the same stresses

which are actually  acting in X axis and Y axis and Z axis.  And we have bought,  there is a

increase in the stress because of the self weight of the element. So we have on the X axis σxx

which is acting and the other phase which is actually having σxx + ∂x(dx) and on the Z axis it is

σzz+ ∂σz/ ∂z and dz.

In this phase it is σz so the difference of the stress is nothing but ∂σz/∂z(dz), so this is the rate of

the change of the stress which actually  undergoes,  because of the self  weight  and the other

reasons. So similarly, the shear stresses are also shown here. For this reason it is τxy+∂τxy/∂z(dz)

on this it is actually shown as ∂zx+τzx/τz(dz) that is τzx+∂τzx/∂z(dz). So now what we do is that

we take, you know equilibrium, static equilibrium in X direction for forces acting in X direction

and Y direction. And we try to get the so called static equilibrium equations.
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So what we did is that now along the X direction that is that whatever the forces acting. So now

we have along the  X direction  on  one phase  there  is  one  direction  σxx is  acting,  on other

direction it is σx is acting, σx+∂σx/∂x(dx). So here it is referred as σx = σxx, σy = σyy, σz =σzz.

So σfx = σxx-σxx+∂σxx/∂x(dx)(dy/dz), so that is the net force acting in the X direction plus the

net shear stress acting along that X direction that is  τzx- τzx+∂τzx/∂z(dz)(dx dy), because it is

acting on dx, dy plane plus ∂τyx-τyx-τyx+∂τyx/∂y(dy)(dx dz).

So by simplifying this what we get is that as you also, we know that τyx= τxy, τxz = τzx by using

that we actually get, when we do not use any self weight acting in the X direction, we get an

equilibrium  equation  like  this  ∂τ  ∂σx/∂x+∂τyx∂y(∂)τzx/∂z=0.  Similarly,  by  applying  and

simplifying the forces in the Y direction, we get  ∂σy/∂y+∂τxy/∂x+∂τzy/∂z=0. So here we have

the two equations which we have to be satisfied in the X direction and Y direction.

If you consider the third direction also we get another equation. But here the static equilibrium in

two dimensional only we consider for coming this. So the equilibrium in two dimensional case is

that ∂σx/∂x+∂τxyx/∂y+∂τzx/∂z=0, and ∂σy/∂y+∂τxy/∂x+∂τzy/∂z=0. 
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Similarly,  in  the  Z  direction  also  we  have  taken  and  with  that  what  we  have  got  is  that

∂σz/∂z+∂τxz/∂τx+∂τyz/∂y-γ=0. Here what has been done is that the self weight of the element

that is γ, there is a unit weight of the element, the soil in the element into volume, what we have

taken is that weight force has been taken. So that is the result why in only in the Z direction it is

appearing. 

For example, if you are having some initial forces in X direction or some body forces like C+4

which is acting, then also if you are having γx γy and γz, then we may also get this equilibrium

equations with γ term as the one of the last terms in the static equilibrium equations. So these

equations are written in terms of protest stresses. Whatever the now we have discussed this static

equilibrium equations, they are, you know in terms of total stresses.
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Now let us see equations of static equilibrium in terms of effective stresses. Now we know that

σx = σ’x + u that can be written as σ’x+γwh and now by differentiating this we get this  is

∂σx/∂x=∂σ’x/∂x+γw∂h/∂x. Similarly, ∂σy/∂y=∂σ’/∂y+γw(∂h/∂y) ∂σz/∂z=∂σ’z/∂z+γw∂h/∂z. Now

what we do is that we know that in terms of proper stress, now you know we convert that into

effective stresses.

So we can write this equilibrium equations as ∂σ’x/∂x+∂τyx/∂y+∂τzx/∂z+γw∂h/∂x=0. Similarly,

in  the  Y  axis  ∂σ’yy/∂y+∂τxy/∂x∂τzy/∂z+γw∂h/∂y=0.  Similarly,  in  Z  axis

∂σ’z/∂z+∂τxz/∂x+∂τyz/∂y+γw∂h/∂z-γ’=0. Γ’ is the submerged unit weight of the soil. Note that

the shear stresses will not be affected by the pore water pressure.
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Now  for  convenience  here  the  equations  in  two  dimensional  equilibria  or  even  and  soil

mechanics, the number of problems can be solved by two dimensional problems. Like returning

wall problem or ST footing, for example, they are called plane strain problems. And a tunnel, a

long tunnel a load amendment, so all those things are the examples of plane strain problems

where two dimensional analysis can be done.

So in the case of two dimensional with plane strain problems, the main in the two equations of

static equilibrium required to be satisfied or, if they are X and Y direction, and Z direction is

perpendicular to the plane of the along the length of the structure. Then it is ∂σx/∂x, that is Y is

perpendicular along with the length of the structure. Then ∂σx/∂x+∂τxz/∂z=0, that is the Z is the

depth axis, X is the horizontal axis, plus ∂σz/∂z+∂τxz/∂x-γ=0.

So for weight-less medium that is that if you are considering a weight-less medium then the

equations  are  reduced  to  where  that  γ  10  will  get  vanished  and  then  we  have  the  static

equilibrium equations as ∂σx/∂x+∂τxz/∂z-0 + ∂σz/∂z+∂τxz/∂x=0.
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Now let us look into the idealized, you know idealization of the stress strain relationship once

again. Some general what we are, you know speaking is that the soils are non-homogeneous, and

they exhibit anisotropy and have highly nonlinear stress strain relationships, which are dependent

on this stress history and the particular stress path followed. So in general the soils are non-

homogenous,  and exhibit  anisotropy, and have  nonlinear  stress  strain  relationship  which  are

dependent on stress history and the particular stress path followed.

So in this particular figure again a typical stress strain relationship is shown here, a stress and

strain. And this is the actual nonlinear relationship and this is the idealized relationship that is O

and Y’ and Y’P which is, this portion is the linear and this portion is the plastic state. So linearly

elastic behavior is assumed, being assumed between O and Y’, and that is the assumed to the

yield point.

And followed by unrestricted plastic strain or flow at Y’P. So this is Y’P with unrestricted plastic

flow is assumed where no stress increase will be there with an increase in the strain. So this is

what actually this particular actual lesson should be idealized to a OY’. So the linear elastic

behavior being assumed between O and Y’, and then Y’P is idealized as unrestricted plastic

strain.
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So this is the non-hardening behavior wherein we have got this OY’ and Y’P. 
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If only collapse condition in a practical  problem is of interest,  then the elastic phase can be

omitted and rigid-plastic model, rigid-perfectly plastic model can be assumed. So that means that

the linear elastic segment is ignored, then directly we have taken the OY’ and Y’P. So this is

nothing, but a non-hardening behavior and rigid-perfectly plastic, this is this trusted relationship

is indicated as rigid-perfectly plastic, that is OY’ and Y’P.

So this is only, if only the collapse condition in a practical problem is of interest, then the elastic

phase can be omitted and rigid-plastic model, rigid-perfectly plastic model can be considered. 
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Now then, in which the plastic strain beyond the yield point and this is yet the further stress

increase. So if unloading and this is particularly elastic strain hardening and softening plastic

models. That means that sometimes beyond, you know the yield point there can be hardening or

there can be softening, you can see that in increase in the stress or decrease in the stress. 

If unloading and reloading were to take place subsequently, subsequent yielding in the strain

hardening model, then the stress at the new yield point is Y’’ which is greater than Y’. Suppose if

unloading and reloading were to take place subsequent leading in the strain hardening model,

that is at stress at new yield point Y’’ is greater than Y’, so an increase in the yield stress is a

characteristic of strain hardening.

A further idealization is the elastic strain softening the plastic model is represented by OY’P’. So

this  is,  you know softening  model,  elastic  strain  softening  model.  And  this  is  elastic  strain

hardening model where the stress increase will happen beyond the point and here the plastic

strain beyond the eyelid point is accompanied by a stress increase, stress decrease. The plastic

strain beyond the yield point is accompanied by the stress decrease.

That in this case, this model is actually called as the elastic strain softening plastic model. In this

case this is actually called as the elastic strain hardening model. 
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So after having seen different, you know the elastic perfectly plastic and rigid plastic models,

you know we try to look in to analysis of the stresses in soil from surface loads, and further we

will actually use this knowledge in, when we discuss about the shear strength. So the stresses in

soil from surface loads in practice the most widely used solutions are those for the vertical stress

at the point below the loaded area on the surface of a soil mass.

So whenever the different types of surface loads of different shapes and different, because of

different structures the stresses are actually transferred to the soil. So in fact the most widely

used solutions are those for the vertical stress at a point below the loaded area on the surface of a

soil mass. Basically for vertical stress, but you can also get as we said in a element when it is

subjected to loading we can also get the shear stresses in acceleration X direction, XY direction,

Z direction, XZ direction and all. And the planes on which this shear stresses are acting.

So the vertical stress increment at a given point below the surface due to foundation loading is

insensitive to a relatively wide range of soil characteristics such as heterogeneity, anisotropy and

nonlinearity of the stress strain relationship, that is what we just discussed, the vertical stress

increment  at  a  given  point  below the  surface  due  to  foundation  loading  is  insensitive  to  a

relatively wide range of soil characteristics such as heterogeneity, anisotropy and nonlinearity of

the stress strain relationship.
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So accordingly  the  solutions  from linear  elastic  theory  in  which  the  soil  is  assumed  to  be

homogenous and isotropic, and are sufficiently accurate for use in most cases. And the main

exceptions are loose sands and soft clays, particularly where they are overlain by a relatively

dense  or  stiff  stratum.  Then,  you know this  is  some of  the  exceptions  which  are  followed.

However, that increments of horizontal stress and of shear stress are relatively sensitive to soil

characteristics.

So  the  increments  of  horizontal  stress  and  of  shear  stress  are  relatively  sensitive  to  soil

characteristics. So mainly we try to determine the increase in the vertical stresses due to these

surface loads. 
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So  displacement  solutions  from  elastic  theory  can  be  used  at  relatively  low  stress  levels.

Requires a knowledge of the values of Young’s modulus E and Poisson’s ratio ν for the soil,

either  for un-drained conditions  or in terms of effective stress.  It  should be noted that  shear

modulus G, where G=E/2(1+ ν), G is independent of the drainage conditions, assuming that the

soil is isotropic.

If  you assume that  the soil  is  isotropy then G is independent  of the drainage condition,  and

assuming that the soil is isotropic. The stresses in soil from surface loads we are discussing.
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And particularly we are now talking about the volumetric strain of an element of linearly elastic

material  under  three  principle  stresses  is  given  by  Δv/v=1-2  ν/E(Δσ1+Δσ2+Δσ3).  If  this

expression is applied to soil is for the initial part of the stress strain curve, then for un-drained

conditions the Δv/v=0, and once you put Δv/v=0 with ν=0.5 then for un-drained conditions E=3

times G that is the G is nothing but E/3.

And if consolidation takes place then Δv/v greater than 0, then ν will be less than 0.5 for drained

or partially drained conditions. If consolidation takes place then Δv/v greater than 0 that means

that there is some volume change occurs. And the Poisson’s ratio will be less than 0.5, and for

drained or partially drained conditions. 
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So the stresses within a semi-infinite,  homogenous, isotropic mass, with a linear stress strain

relationship, due to a point load on the surface, were determined by Boussinesq in 1885. The

stresses due to surface loads distributed over a particular area can be obtained by integration

from the point load solutions. And the stresses at point due to more than one surface load are

obtained by superposition.

In practice loads are not usually applied directly on the surface but the results of surface loading

can  be  applied  conservatively  in  problems  concerning  loads  at  the  shallow  depth.  So  we

compute, we assume that the loads are applied on the surface, but in practice the loads are not

applied  directly  on  the  surface,  but  the  results  for  this  surface  loading  can  be  applied

conservatively in problems concerning loads at the shallow depth.

If you're actually having, you know one or two loads, then the superposition principle will be

used, and if you wanted to get the effect due to stresses or certain depth, the integration principle

is used. The stresses due to surface loads is distributed over a particular area, can be obtained by

integration from the point load solutions.
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Now let us consider the stresses due to point load. So point load are concentrated load, vertically,

vertical load transfer to the soil from an electrical power line. So one of the practical examples is

that for the point load is the vertical load transferred to the soil, from an electrical power line or

electrical pool. So Q is the concentrated load, and we are interested in determining the stress at a

depth Z and the vertical stress and σr is the stress in the radial direction, σ θ in this direction.

Now the distribution of vertical stress σz with depth is given here which is actually here like a

curve which takes the shape like this. And it is high close to the surface, and as you go deeper the

vertical  stress  effect  decreases.  So variation  of  σz with  z  on the vertical  through a vertical,

through the point of application of the load Q. And at any depth Z1, Z2, Z3, where Z3 greater

than Z2, Z2 greater than Z1.

If you look into it, and this is something like the distribution as you go away from the load, the

stress decreases. So this is something like a bell shaped curve will come on both sides. And as we

go down the magnitude of the increase in vertical stress due to the load at the surface keeps on

decreasing. Now you see the theory behind this, the variation of the vertical stress due to point

load, which is given in this.
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So the stresses at the X due to point load Q on the surface are as follows. And these are actually

obtained by, you know taking the equilibrium in the vertical direction let us say for the vertical

stress. So (σz=3Q/2Пz2(1/1+r/z)2)5/2. Similarly σr is given here and the σ θ that is the stress in the

radial  direction and the stress along this direction.  Now rz=3Q/2П((rz2(r2+z2))5/2, it  should be

noted that when ν=0.5 σ θ=0, when ν=0.5 σ θ the stress will be 0.
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Now  stress  due  to  point  load,  that  importantly  vertical  stress  we  can  write  it  as

σz=3Q/2Пz2((1/1+r/z)2)5/2 and this can be written as σz=Q/z2(IP) where IP=3/2П((1/1+r/z)2)5/2. So

this is the expression for σz which is independent of elastic modulus and Poisson’s ratio. You can

look into it, the expression for σz is independent of elastic modulus and the Poisson’s ratio. Now

influence factors for the vertical stress due to point load can be given like this.
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And this table is actually shows for different values of r/z and IP values. IP are is also called as I

with suffix P, that is I Boussinesq, and r/z. When r/z=0, so this is for different r/z values we can

look into it, this is one set of r/z, this is another set of r/z, this is another set of r/z. When r/z=0 IP

will be 0.4775 which is actually simplified as, you can say that 0.478. So you can look into it, so

this is r/z=0 to 0.7, r/z=0.8 to 1.5, and r/z=1/6 to 2.6.

So as we go deeper and deeper you can see that the IP value is decreasing. So as r/z increases IP

decreases and σz, you know tends to be ∞. So influence factors for the vertical stress due to point

load, that means close to the, you know load the stresses are, you know close to the ∞ σz this

thing. But at a certain depth, you know they also diminish.
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So  vertical  stress  distribution  along  with  the  vertical  line,  this  can  be  obtained  by

σz=3Q/2Пz2((1/1+r/z)2)5/2, one for maximum σz if you differentiate this and equate it to 0, then

by simplification we get r/z=0.817. When r/z=0.817 then the σ, the distribution of the vertical

stress  follows this  type  of  curve,  where we have,  there  is  an increase  and it  reaches  to  the

maximum value,  and that  maximum value  at,  you  know this  particular  depth  is  σz  max  =

0.0888Q.

And this is the stress, maximum stress σzmax, and then this has again decreases for a certain

depth. So here you can just see that in this expression as z2 is involved in the denominator of the

expression for σz, first it increases, then with the depth and attain a maximum value, and then

decreases further with an increase in the depth. So this all be the vertical distribution along a

vertical line, not at the center, but at a distance away from the r, from this thing that is how the

stress variation, the distribution of the clear stress will be like this. 
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Now as we said that we have understood that,  you know the stresses, you know they have,

whenever  the surface is  actually  loaded with certain  type of a loading,  then there  is  certain

influence zone. So this is defined by stress isobar or a pressure bulb. So this stress contour or a

line which connects all points below the ground surface at which the vertical stresses is the same,

is called as a isobar, stress isobar, stress the pressure bulb.

So pressure at points inside the bulb are greater than that at a point on the surface of the bulb,

and the pressure at points outside the bulb are smaller than that value. So any number of stress

isobars  can be drawn for any applied  load,  so innumerable  number of stress  isobars  can be

drawn, you know for the applied load. And the system of isobars basically indicate the decrease

in the stress intensity from the inner to outer ones.

So that means that as we are actually coming, this is the stress bulb or a pressure bulb resembles

like a onion, like from the inner side, inner layers will have the higher stresses, and as you're

traversing towards outside, the stress intensity keeps on decreasing. So mostly the stress isobars

are not circular curves, and they are actually classified and categorized as Leminscale curves.

The stress isobars are the Lemniscates curves. Now let us see how we can actually get the, you

know plot the isobar.
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Say for example, let us say that we wanted to plot σz=isobar for 0.1 times Q for unit area. That is

10% isobar we wanted to plot. So now we know that σz =Q(IP/z2) so we write IP=σzz2/Q, by

substituting for σz=0.1Q we can write 0.1Q(z2/Q), so we get 0.1z2. So when r=0, IP=0.4 sense of

5 we said. So the depth of the pressure bulb or depth of the isobar can be obtained by zmax=

√0.4775/0.1=2.185 units is the depth.

Now we can actually take Z and IP and r/z, r and σz, so with that what we can do is that, once

you substitute say z=0.5, then we can calculate what is IP and r/z and r. So by knowing r and z

we can actually plot, and then the stress intensity along that particular Leminscale curve portion

is 0.1Q. Similarly, the last point that is being Zmax = 2.15 and at the center where r=0, IP is

0.4775 and r/z=0, and r=0, that is also intensity is 0.Q. So like this by using this procedure we

can actually determine the stress isobar.
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So example problem let us consider, a single concentrated load of 1000KN, acts at the ground

surface. So we need to construct an isobar for σz=40 KN/m2 by making use of the Boussinesq

solution. So let us considerσz=3Q/2Пz2(1/1+(r/z)2)5/2. Now we can simplify this by taking r out,

r= √z(√3Q/2Пz2(σz)2/5-1. So now for Q=1000 KN, σz = 40 kilo pascals, we obtain the different

values of r1, r2, r3 for different depths, different depths z1, z2, z3. So the values can be obtained.
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So similarly by, otherwise by using now the example which we have done earlier, so by putting

different values, we can actually calculate and this is how the isobar are influenced zone. So this

is very much important sometimes if you are having say, isolated fooding, and you know, if you

are  having the  load,  trying to  see  what  is  the  depth of  extent  of  the  influence  of  the  zone.

Suppose, if you having some week zones, then these zones can actually undergo the settlements.

So these, you know the predictions of these, the extent of the influence is actually helps here.

The stress isobars are pressure bulb indicates the zone of influence. So you can see that, this is

the Zmax that is 3.445, which is actually indicated here. So this is for 1000 KN load, this is how

the,  you  know this  isobar  for  a  σz=40  kilo  Pascal’s  is  given.  Suppose,  it  will  be  20  here,

somewhere here will be there.
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So, and mostly, you know the two solutions are actually popular, one is, you know Boussinesq

solution, and Westergard solution. We also compare in the Westergard stress distribution under

the  point  load  let  us  say. So  Boussinesq  assumed  that  the  soil  is  elastic  and  isotropic  and

homogeneous. But however the soil is neither isotropic nor homogeneous. The most common

type of soils are met in nature are the water deposited in sedimentary soils.

That  means that  we have ordinary layers of clay and truly compressible  layers and laterally

incompressible layers like sand. So we have like say in alluvial soils where clay and sand, clay

and sand deposits are there. So the sedimentary soils where we actually have got, you know the

most  common type of  soils  or  this  stratified  soils.  So soils  of  this  type can be assumed as

laterally reinforced by numerous, closely spaced, horizontal sheets of negligible thickness.

But infinite rigidity, which provide the mass as a whole from undergoing lateral movement of the

soil grains. So for this case ν or μ = 0, so here, you know what Westergard has actually assumed

is that the soils of these type can be assumed as laterally reinforced by numerous, closely spaced,

horizontal sheets of negligible thickness, but infinite rigidity, which prevent the mass as a whole

from undergoing lateral movement of soil grains. So with that the theory if you look into the

solution proposed by Westergard σz is given by.
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Q / 2πz2 in the √ of 1 – 2 μ / 2 – 2 μ / within square brackets of 1 - 2 μ / 2- μ + R / z whole

square to the raise 3 / 2 which is indicated by Q / z2 into I and w iw is impressed factor for the

westergard stressed machine for point load and for the case where μ = 0 the westergard equation

for stressed machine for vertical low practical stress is reduced to σz = Q / πz2 into 1 / 1 + 2 x

R/z2 / 3/2 so that Q/ z2 into iw so iw is inference factor as far as the westergard is also called as

westergard task question and which is iw = 1/ π/ 1 + 2 are proved R/z2 to the raise 3/ 2 for R/z =

0 iw = 1 / π which is nothing but 0.3183 so you can see that this is actually you know 0.3183.
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So now here if you look into the plot this is the Bosussinesq and which is influence factor of due

to Boussinesq theory and this is the influence factor due to westergard theory, so values of you

know iw are ib or iw for used in the Boussinesq and westergard equation and this is the depth

axis r/ z so you can see that at up to 1.5 up to r/z = 1 there is a distinct variations is there and the

value of iw which is = 0.3183 at r/ z = 0 which is 33% > the Boussinesq influence factor which is

0.478 or 4.4775 so because of these by joule technical engineers actually preferred to you is the

Boussinesq solution.

As that this gives the conservative results but these westergard series also used in a determining

the stress particularly for the payments when we are actually having two layers system in trail

layer system and this series is actually extended in determination of the stress in the pavement

layers now after having considered you know the you know different types of theories where two

different theories for point logs, now what we do is that we would try to use the whatever the

knowledge we gained from the Boussinesq solution for the point load we extended to the word

types of loadings now you assume that we have series of you know line loads a line load which

is actually.
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Giving so example of the for the line load in the real practical problem is that a long brick wall

are a rail road track if you are having a two tracks two rails then that is actually that is actually

two for a broad cage that as says 1.65m they separated by two lines is separated by separate

distance, so a long brick wall are a rail road track is example for the vertical stress due to a line

load, so the series of point loads which is actually given so what we do is that along the length y

you take a load intensity q per unit length into dy.

So assume that there are series of point load which are actually there so by using that Boussinesq

solution we can get stress depth z in terms of the Cartesian code nets x and x along the other axis

and depth along the depth axis is z σz = 2q/π x z3/x2 + z2 to the raise 2 and σx is nothing but in

the σx is nothing but 23 / π x x2 z x x2 +z2 to raise and τxz = 23 / π into xz2 into x2 + z2)2 so

here by knowing the σx so this is you know when we have a line load let us say if we are got a

returning structure.

So we actually calculated the certain depth what is the increasing the horizontal stress due to a

presence of a line load or if you are having a returning wall and you know there is say two rail

tracks are actually going parallel to the length of the road, then you know we can actually true

mean what is increase in the stress long the length of the wall that is by the σx, so σz here is

obtained from the Boussinesq solution here what we have done is that we actually have taken

qdy as the point low and integrated what this length between - ∞ into + ∞  then with that we have

got σz these 2q/π into z3 by x2 + z2)2 so vertical stress should stress would line load.
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Can be given by signification like σz = q / z 2/1 π into 1 + x /z whole to the raise two so this is

gain indicated by a in terms of σz = q il/z il is then influence factor for the line load and at the

xyz = 0 that il = 0.6366 into q/z so σz = 0.6366q /z that xyz = 0 so σx now as I said 2q/π into x2z

into x2 + z2 to the raise two this a be used to estimate the laterals pressure and lateral pressure on

earth-retuning structure due to the line load on the surface of the back fill, how it can be done

that is looking do it.
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So if you assume that there is a retaining structure and in the dimension form here let us assume

that it is in the m times h and n times h let us say the h is the height of the retaining  structure and

at a distance from the top of the returning one the del density is actually acting at m times h away

from the that is q per unit length is actually acting what is assume that there is a brick wall or a

boundary  wall  is  actually  just  in  here,  when you will  see that  what  is  the  influence  of  this

boundary wall on the lateral thirst existed on the wall.

So the basic by using the expression which is given for the horizontal stress obtained from the

Boussinesq solution we can write σx = 2q/πh into m2n / m2 + n2 whole square, so however the

structure will turn to interfere with the lateral strain due to the load q and to obtained the lateral

pressure  on  relatively  rigid  structure  the  second  lay  out  q  must  be  imagine  when  an  equal

distance on the other side of the structure, so for the two you know two line looks two you know

line loads.

The lateral pressure is actually given by px = 43/πh so this is multiplied simply by 2 43/πh into

m2n the m2 = n2 the whole square, so we can actually get the total thrust on the structure is given

by P suffixes 0 to n there is Pxh into dn which is nothing but 23/π into / 1 / m2 + 1, so this is the

total thrust exited on the so, by union by knowing m which is the coefficient which is multiplied

and so many times the height h and by knowing the load intensity per unit length and we can

actually calculate what is the lateral thrust of the sector in depth, so vertical stress due to the strip

load if you look into to it.
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A here strip load is the load transmitted by a structure a finite with of infinite length of the soil

surface, so before looking into this let us try to look into the problem with one second with how

to construct a stress isobar for you know if the point load is about 2000KN so let us look into this

particular problem.
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Where  in  we  have  the  example  problem for  a  single  concentrated  load  of  Q  2000KN and

construct and isobar for σ = 40KP so here the solution runs like this σzz = σz = Tp into Q/Z2 that

is what actually we have discussed in this lecture now IP = σzz into Z2 / Q which is nothing IP =

σzz into Z2 / Q so what we have done is that we have rewritten this expression is IP in terms of

IP = Z2 into σz / Q now what we do is that we know the σz the for which intensity we wanted to

determine.
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So for to get that what we do is that IP = 40 into Z2 / 2000 so here what we have done is that by

putting the intensity magnitude of the point load and by putting this stress intensity for which

actually we interested in trying the isobar we can actually that the IP in terms of z, so IP = Z2 / 5,

so when r = 0 IP = 0.4775 by using this  we can actually  calculate what is the depth of the

pressure bulb that is Z = Zmax at r = 0 so with that we can actually get Zmax = √ of 50 into

0.47775 with that we can actually gt as 4.89m as the depth of the pressure bulb then after having

obtain this like the procedure which we have discussed what we can do is that.
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We actually take Z on the you take Z = 0.5 1.5 2.5 3.5 so and Zmax = 4.89 and for using IP = Z2 /

50 we can actually determine what is the you know values of a IP so that r = 0 which is 0.4775

and r/z = 0 r/r = 0 the stress is again 40KP so by knowing r and z we can actually again plot the

here by plotting this unit and on the radius axis radial axis and 0.5m t will be something like a

you know in landscape curve portion where we can see that the r is actually increasing that is 2.1

again is dropping down.

So this curve which actually takes the shape is actually you know takes the form a latent state

curve and the this will be you know stressing density for a particular Pascal’s stress industry

suppose if you need isobar for 80KP it will be inside and if it is 20KP it will be outside that

particular line, now after discuss into the example problem we continue with the vertical stress

due to a strip load so here strip load is the load transmitted by a structure of finite with so here

assume that we are having you know we.

We have a boundary wall where it is connected with you know that the foundation for that can be

a strip foundation or if you are having a closely spaced columns along the length of the building

and all the foundations are corrected along the length that is actually found so like a strip load

with the finite  width here and the width can be 2a a strip load is the load transmitted by a

structure  finite  with  or  infinite  length  along  this  thing  so  this  is  again  the  you  know  two

dimensional you know two dimensional analysis.



Because of these are called again plane strain structure so qs is nothing but the applied uniformly

applied stress over this area, so what we do is that you know for the solution for this we use

again extension of Boussinesq solution.
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And we have in the define that this is the putting which is actually running and the width is 2a

and we have the loading density qs by what we do is that along this is the x axis and this is the

depth axis and this width is 2a that is the a this side and a reach this side and a root that side like

what we do is that we along this x axis we assume that the qs which is actually again qs into dx

so we consider this like a one line load along this length and assume that line load is actually at

distance x from here.

And the depth z and so this is the thing that x and this is the depth z x2 + z2 = r2 and Cos  θ = z /r

and x = this distance is nothing but x = z Tan θ, so dx = z sequence square θ d θ dx = z / Cos 2 θ d

θ so by using now the Boussinesq solution which we have obtained for line load what we can

write is that small increase in the stress at a depth d σzz = by using the line load expression for

the you know vertical stress we can write this σz = 2 but instead of q now we write qs dx that we

are considered that as the line load.

This is the intensity but into multiplied by a small r distance d 2qs dx into Z3 / π into x2 + z2 to

the raise two, so these σz = 2, 2q was z3 / πr4 z / Cos2 θ d θ now what we have done is that for dx



we substituted z / Cos2 θ d θ and with that what we have what is that where you simplify further

we have got d σz = 2.
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2qs / πCos2 θ d θ with that σz = 2qs / π θ1 to θ2 Cos2 θ d θ so θ1 and θ2 are nothing but where

we have the this is the extent of this load and this is another extent of this load this is the strip

load so σzz = qs / π once after signification we can get in terms of θ, θ + ½ Sin into θ that is θ1 to

θ2 so θ = θ – θ1 so what we have got is that if you are having a strip load this is the expression

which actually we will get if you are actually having a the so called you know the increase in the

stress due to a strip having.

Width which is actually defined by deflect geometry having definite depth of 2a that is the breath

of the foundations indicated by b = 2b so in this lecture we have actually try to understudy about

the stresses caused by in the soil due to some surface load and this is as a pre you know request

for the understanding from the compressibility and consolidation theory in soils.     
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