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In the previous lecture we discussed about the response analysis of structures subjected

to multi points excitation.
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And how we obtain the power spectral density function matrix for the responses given

the power spectral  density function of the ground excitation and these power spectral

density function of ground excitation was converted to a power spectral density function

matrix of the excitations at different supports with the help of the inference coefficient

matrix r and the various vectors or the vectors of excitation at different supports that lead

to a matrix called S x double dot g matrix. Which denotes the power spectral density

function matrix of the excitations at different supports in which the diagonal terms are

the power spectral density of the excitations at different supports and the cross power

spectral  density  terms  represent  the  cross  power  spectral  density  between  different

excitations  at  different supports,  and that is  we are representing with the help of the

matrix S x double dot g that is a matrix and it has cross power spectral density terms.



Once we have these matrix defined and the r the influence coefficient matrix,  that is

known then one can get the power spectral density function matrix of the displacements

or responses S x x this will not be S x double dot g this will be S x. So, x x as H m r S x

double dot g then the transpose of this quantities H m r on this side that is r T m T and H

becomes now a complex conjugate and transpose of that.

So, that is a formulation that we have proved before and if we were wanting to obtain the

cross  power  spectral  density  function  between  the  excitation  and  the  response

displacement that is S x double dot g x that is equal to minus H m r x double dot g r x

double dot g is a matrix of size S by S where is the number of supports and r of course, is

a coefficient matrix of the size n into S. Also we discussed in the previous lecture that

many  a  time  we  are  not  interested  in  obtaining  all  the  responses,  but  we  may  be

interested in only a selected few. In that case the a reduced frequency response function

matrix is obtained from the total frequency response matrix of the system and that we

denote by H bar and using that H bar one can obtain the power spectral density function

of the selected or matrix of the selected responses.
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Then we saw as an example we solved a problem.



(Refer Slide Time: 04:40)

I(n which we had a 3 supports and two nonsupport degrees of freedom u 1 and u 2 and

we discussed how we obtain the cross power spectral density function terms of the power

spectral density function matrix of the excitation. 

(Refer Slide Time: 05:05)

With the help of that we obtain the values of the power spectral  density function or

power spectral density function of the response u 1 and u 2 and from that the area under

the curve provided us the root mean square value of the responses, and these root mean

square values of the response were compared with the time domain analysis, note that the



excitations  where  the  elcentro  earthquake  record  and  the  elcentro  earthquake  power

spectral density function, they are the inputs respectively for the two kinds of analysis.

So, you can see that comparison was very good. 

(Refer Slide Time: 05:53)

We now solve another problem in this class, the problem of the pitch reportal frame in

which we had two degrees of freedom if we recall,  one at the as the sway degree of

freedom on the left hand side and the other one is a vertical degree of freedom at the

crown. So, this is the problem that we had solved before for the ground excitations which

had a time lag of 5 second, and for that we derived the r matrix and this was the r matrix

and also we derived the mass matrix if we recall the mass matrix for such systems is not

a diagonal mass matrix, but they are the couple mass matrix although we are using the

lump masses at the different degrees of freedom.

So, the derivation of this also was worked out before this is the K matrix. So, with the

help of the K matrix and the m matrix the frequencies two frequencies of the system

where obtained they are 5.58 and 8.91 radiant per second and with the help of these two

frequencies we obtain the values of alpha and beta to construct the C matrix and the C

matrix thus was obtained then.
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For obtaining the value of the C matrix, after we have obtained the value of the C matrix

then we use the usual formulation that is the equation that I had shown before. So, we

plugged into this equation and in constructing H matrix,  we have k minus m omega

square plus I C omega inverse of that that becomes the h matrix.

So, once we know this h matrix then we obtain the values of S x x and the S x double dot

g matrix was obtained in this particular fashion and the cross terms where one cross term

was exponential  of minus 5 omega by 2 pi because between the 2 supports, the first

support and second support there was a time like a 5 second and the first support and the

third support the time lag was 10 second. So, therefore, they appear like this one row 1

and row 2 in to this matrix and the results where compared and for the two cases that is

in  one  case  we had a  perfectly  correlated  excitation  that  is  at  the  two supports  the

excitations where same and in another case we obtained the excitation, having a time lag

of 5 second.
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Next we discussed about the power spectral density function of absolute displacements

and in order to obtain these power spectral density function of the absolute displacement

what  we  have  to  do  is  that,  we  have  to  add  to  the  relative  displacement  x  to  the

displacement or quasi static displacement that is introduced at the degrees of freedom

because of the ground displacements at different supports. So, in order to get that we

multiply the x g vector that is the excitation vector at the different supports with the r

matrix r matrix, and that gives us the contribution of the different displacements of the

excitations to the nonsupport degrees of freedom and the relative displacement was x that

is the with respect to the base that displacements of the different nonsupport degrees of

freedom and that is multiplied by or pre multiplied by a identity matrix i.

So, this becomes the addition of these two becomes the absolute value of the total value

of the displacement at different degrees of freedom and once this relationship is obtained

then using this relationship one can write down the value of the power spectral density

function matrix like this, that is S x x is for this term because I S x x I t will be S x x

itself, then r S x g r T where S x g is the power spectral density function matrix of the

ground displacement and then I is S x x g and S s x g and x.

So, they are the cross power spectral density function matrix between the displacement

and the ground excitation or ground displacement and this is the other part of the cross

power spectral density function matrix which generally is a complex conjugate of this



and  transpose  that  you  have  seen  before.  So,  once  we  have  this  expression  in  this

expression this is known this we have already obtained this is also given, because if the

power spectral density function on matrix of the ground acceleration is given to us then

from that one can construct the power spectral  density function matrix of the ground

displacement. And in order to get the value of S x g and x g x we use this equations that

is  first  we obtain the value of the cross power spectral  density function between the

excitation and the displacement using this standard expression, in which it is S x double

dot g and S x double dot g is replaced with the help of the S x g by multiplying it with

the help of omega square.

So, this and the complex conjugate of this S x g is a complex conjugate of S x g x. If this

matrix is a complex matrix then there will be a star over here star and transpose and if it

is a real quantity then the star does not come into picture it is simply a transpose of that. 

(Refer Slide Time: 14:09)

Now with the help of this we wanted to obtain the response of the pitch reportal frame

and for that we are interested in finding out the response of the system not only for the

not for the relative displacement, but for the total displacement.
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So, the for obtaining the total displacement we have to know the first S x g x, S x matrix.

So, that is given in this particular form and the since S x g and S x double dot g they are

related by a relationship that S x double dot g is equal to omega to the power 4 into S x

double dot g that we have seen before. Then if you substitute that relationship over here

then this become HM r omega minus to the power two into S x double dot g not S x g

and this x x double dot g is known to us and S x double dot g can be constructed from the

time lag that is given to us that is a 5 second time lag.

So, these S x double dot g matrix would be equal to this C 11 multiplied by S x double

dot g mind you this S double dot g is a single quantity that is the power spectral density

function of the earthquake that is the elcentro earthquake that we have consider and these

when it gets multiplied by C 11 then it gives the power spectral density function matrix

between at point 1. And at for point 2 the excitation becomes C t 2 and into x double dot

g and; obviously, this C 11 and C 22 these values are equal to unity and C 12 and C 21

they are the cross power spectral density function on terms and we had seen before that

for the same earthquake producing different kinds of excitations at different supports.

They are the cross power spectral density function between the excitations is equal to the

power spectral density function of the earthquake that is a single quantity multiplied by

the  coherence  function  Cij  and square n and its  function  is  given or  defined in  this

particular fashion. And we use some empirical relationship for obtaining the C 12 or C

21 etcetera. S x g x matrix will look like this that is the cross power spectral density

function  matrix  between  the  ground displacement  and the  on  nonsupport  degrees  of



freedom displacement x will be like this, that is S x is g 1that is for the first support and

this is x 4 is the displacement square displacement of the pitch reportal frame.

So, S x g 1 S x 4 represents the cross power spectral  density  function,  between the

excitation one support to the displacement x 4 similarly x g 1, x g 5 that indicates the

cross power spectral  density  function between the excitation at  support one with the

displacement  x 5 and in that  fashion one can also describe the cross power spectral

density function between the support 2 and the displacements 4 and 5.

So, that gives us the x g x matrix; however, this x g s matrix can be computed easily with

the help of the above relationship.

(Refer Slide Time: 19:18)

That is the relationship that we have used and once we take that relationship then what

first we have to obtain is the cross power spectral density function matrix of excitation S

x double dot g is the elcentro power spectral density function, and the C11 C 22 C 12

terms they will be this will be 1 1; obviously, and this will be the row a row will be equal

to exponential of minus 5 omega by 2 pi is equal to row.

So, one can work out these value of C 12 for every value of omega and so, this matrix is

completely defined and then we write down the cross power spectral density function

matrix between the ground excitations and the displacement x and that is written as HM r

x S x double dot g divided by omega square, that becomes the relationship for S x double



dot g and this because S x double dot g over here is equal to omega to the power 4 into S

x g.

So, using that relationship we get omega square below over here that is how the omega

square at the denominator has come then HM r divided by omega square this we take out

and then S x double dot g matrix that is written over here. The H matrix is nothing but K

minus M omega square plus i C omega inverse of this. So, you substitute for H then this

gets multiplied by M and then multiplied by r and then this matrix and this is a single

quantity S x double dot g that is the power spectral density function of the earthquake

that  is  the  elcentro  earthquake  and  all  f  them  are  2  by  2  matrix  therefore,  this

multiplication of the matrices for a particular value of omega leads to a 2 by 2 matrix of

this form A i omega into S x double dot g.

Since there is a this term will be a complex term. So, this matrix is expected to be a

complex matrix of size 2 by 2 and that multiplied by S x double dot g, and once we know

the value of this matrix S x g x then one can obtain the S x x g as this is S x x g is equal

to S star T, x double dot g see that here since it is a complex matrix we take a complex

conjugate of that and then transpose in order to get S x x g from x g x x..

(Refer Slide Time: 22:45)

So, once these two quantities are known to us or this two matrices are known to us one

can and substitute them into this particular equation, equation 4.81 and in equation 4.81

we know S x x then r x g that is also S x g is known. So, this r is also known. So,



therefore, the this particular term is also known and we have obtained S x x g and x g x j

and therefore, the all the terms in this equation are known.

So, one can get the power spectral density function matrix of the absolute displacement

of the pitch reportal  frame for degrees of freedom 4 and 5, 4 is the sway degree of

freedom and 5 is the degree of vertical degree of freedom at the crown. So, that is how

these power spectral density function earns of the degree of freedom 4 and degree of

freedom 5 a represents the absolute value. So, the power spectral density functions of

these two quantities were obtained and plotted against frequency that is for degree of

freedom 4 and this is for.

(Refer Slide Time: 24:43)

Degree of freedom 5 and one can see that the for degree of freedom 4 the value is more

compare to the value of the power spectral density function of the degree of freedom 5,

because this is of the order of ten to the power minus 5 the other one is of the order of 10

to the power minus 3. And the area under the curve of course, provides us the root mean

square value of the absolute displacement  of the degree of freedom 4 and degree of

freedom 5.

So,  that  is  how one can  obtain  the  power spectral  density  functions  of  the  absolute

displacements if it is required.
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Next you come to the power spectral density function of the member forces, once we

obtain the power spectral density function of the displacement that is the displacement of

the various translational degrees of freedom, then from that one has to obtain the power

spectral  density  functions  of  the  member  end  forces  and  for  that  we  take  say  this

particular frame and here.

(Refer Slide Time: 26:23)

Say this is the frame in this frame we have say 1, 2, 3, 4, 4 supports and at these 4

supports we have got 4 different excitations because of the time lag between them and



these are nonsupport degrees of freedom that is x 1 to x 6 they are nonsupport degrees of

freedom and say we are interested in finding out the power spectral density function of

the bending moment at i and j. So, that is of our interest.

So, then what we do in the beginning that we write down the matrix, the stiffness matrix

of the entire structure with these rotations and once we know the rotations then from

there one can get the relationship between the rotation and the displacement and this

matrix is called A matrix A. Say once we know the relationship between the theta matrix

theta vector and the x vector through matrix A then one can obtain the power spectral

density function of the rotations in terms of the power spectral density function of the

displacements using this equation and the cross power spectral density function between

the displacement and the rotation is given by this A S x x and the S theta x will be simply

the transpose of this.

Now, if  x theta x is a complex matrix then of course,  there will  be a this  will  be a

complex conjugate and then transpose. Now once we have obtained this S theta theta that

is the power spectral density function matrix of rotation and the power spectral density

function matrix of displacement and the cross power spectral  density function matrix

between rotation and displacement. So, once they are known then from that from those

matrices  one  can  select  the  specific  terms  of  the  power  spectral  density  function  to

construct the power spectral density function matrix, which will be used in finding out

the power spectral density function of member end forces.

Now, for example, if I take this column i j that I had shown in the figure then the values

which are required to find out the bending moment at the ends i and j are x i theta i x j

and theta j. So, these are the particular displacements and rotations which are required.

So, we take out that and we write down the relationship between the member end forces

and the member end displacement with the help of the usual equation f is equal to K into

delta.
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Once we are able to write that then S f f that is the power spectral density function matrix

of the member end forces becomes equal to K into S delta delta K T, this K is known that

is the member stiffness matrix and S delta delta is the or delta delta they are the member

end displacement.

So, by knowing S delta delta once can easily find the power spectral density function of

the member  end forces.  In many cases we want the member end forces in the local

coordinate  that  is  the  member  end  coordinates.  Then  of  course,  there  at  a  further

transformation is required; that means, if the delta bar is the displacements in the local

coordinate and if delta are the displacement in the global coordinate there you related

through  this  relationship  that  is  delta  1  is  equal  to  T  into  delta  where  T  is  the

transformation matrix and substituting for the delta bar that is one can obtain the power

spectral density function matrix of the member end forces in local coordinate, to be equal

to K into S delta bar delta bar and S delta bar delta bar is further converted to S delta

delta by including the transformation matrix T. So, it is possible to obtain the power

spectral  density  function  of  the member  end forces  both in  the global  and the  local

coordinates that is they are power spectral density function of individual quantities may

be bending moment share force etcetera.
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Now, these in this is example these that displacement. 

(Refer Slide Time: 32:56)

So, one and two that is the if you recall that is the example problem for the yes I think

yeah, this is the problem if we recall we had solved for the for finding out the responses

in time domain, where we specified the ground motions at this 3 supports and they are

the same ground motion and this was a modal of a pipeline buried pipeline. And these

supports there were 3 supports were taken, the soil damping and stiffness matrix or the

damping and the stiffness are replaced by spring and dashpots and these values were



given to us and the degrees of freedoms where 1 2 3 they are the translational degrees of

freedom and a rotation here.

So, one can easily condense out this rotational degree of freedom and once you condense

out this rotational degree of freedom, then with the help of the translational or matrix

stiffness matrix corresponding to translation degrees of freedom 1 2 3 one can obtain the

responses for the degree of freedom 123.

Now, the stiffness matrix for the system was this 3 by 3 stiffness matrix, we obtained a

damping matrix using C bar is equal to alpha m plus beta k, and the 3 frequencies that

that are obtained from this k matrix and m matrix so, that where 8 9.8 and 12 radiant per

second.

(Refer Slide Time: 35:04)

And  then  we  obtained  the  displacement  power  spectral  density  function  for  the  3

displacement and using the same procedure that we have discussed before, but now we

are interested in finding out the power spectral density function of the bending moment

at the center.

Now, for that we recognize the fact that at the center if all the 3 degrees of or at all the 3

supports the ground excitations are the same then the we expect that there should be not

be  any  rotation  over  here  and  in  fact,  it  can  be  easily  shown with  the  help  of  the

condensational matrix. So, if there is no rotation then S theta theta will be 0 and x S x



theta also will be equal to 0, that is the power spectral density function of the rotation

and the cross power spectral density function of the rotation and displacement they will

be equal to 0.

Now, if we wish to find out say bending moment here, then the displacement that we

should take this will be the displacement 1 and then if there is a rotation over here say

theta 1 this is the theta 1 and then the displacement here x 2 and then the rotation here

theta 2. So, if you know them then with the help of that one can obtain the power spectral

density function matrix of the bending moment at this point and at this point.

Now, since at this point the bending moment is equal to 0. So, we need not include this

theta 1 into this vector and we can modify our stiffness coefficient for bending moment

for this member accordingly. So, that these theta 1 need not be considered and since theta

2 is 0 then we get only x 1 and x 2 these are the two displacements if we know this two

displacements only one can find out the bending moment at this point, and that is that

bending moment can be written by simply by this equation 3 E I by L square into x 2

minus x 1 in the matrix form these becomes minus 3 E I by L square 3 E I by L square

into x 1 and x 2 where x 1 and x 2 are the displacements at this two points and this can

be further written in this particular form that is the S bending moment, that is the power

spectral density function of the bending moment is equal to K S x x K T.

So, if we know S x x once can find out the bending moment at this particular point. Now

the important  part  of  this  analysis  is  that  if  the ground motions  are  not  the same at

different points then the relative displacements at this point an in this point and from that

one cannot obtain the bending moment at this particular point, that is at the center that

the way that we have obtained the bending moment.

In that case what we have to do we have to find out the absolute displacement or the

absolute displacement power spectral density function of point 2 and the power spectral

density function of the absolute displacement at  1 that must be known and the cross

power spectral density function must be known or in other words we must have a power

spectral density function matrix of the absolute displacements at 123 degrees of freedom.

And for this particular problem we need not bother about the rotation here because the

rotation becomes 0 if the degrees of freedom are or the excitations are same at these 3

points, but if they are not same and we are wanting to find out the bending moment at



this particular point then we wish to have the power spectral density function matrix of

the absolute displacements at 1 2 3 and a power spectral density function of the rotation.

However the power spectral  density function of the rotation at this point will not be

effected by the ground displacements, that is taking place at this point at different points

with a different displacements will not be effected by that this theta can be obtained S

theta can be obtained from the relative displacement itself.

So, therefore, what we do is that in obtaining the cross power spectral density function

matrix of these absolute displacements, we go back to the previous problem that we have

solved in which we know we should know the power spectral density function on matrix

of the relative displacement then power spectral density function matrix of the ground

displacement then S x x g and S g x x that we had solved in the previous problem. And

with the help of that we obtain the power spectral density function matrix of the absolute

displacements and then we obtain the bending moment that is S bending moment here in

place of S x S here, this S x x is the power spectral density function matrix of related

displacement  that  would  be  replaced  by  the  power  spectral  density  function  of  the

absolute displacements.

So, the problem in which we have got the same excitations at a different supports, the we

need  we  do  not  have  to  find  out  this  absolute  displacement  power  spectral  density

function matrix, we can only obtain the power spectral density function matrix of the

relative  displacement.  However, the  problem becomes lightly  complex,  if  we have  a

power spectral density of the ground excitations at different supports are different and for

that remember that one has to find out the power spectral density function matrix of the

absolute displacements or total displacements of different degrees of freedom. And also

we have to find out the condensed out a power spectral density function matrix of the

condense out degrees of freedom that that is like rotations theta theta theta theta and the

cross power spectral density function between theta and x.

So, all those things must be known then only one can obtain the power spectral density

function  matrix  of  the  member  end forces.  Thus  we see  that  to  find  out  the  power

spectral  density  of function  of the member  forces  for excitations  which are same as

different supports the formulation is simpler, but if you are wanting to find out the power

spectral density function of member end forces for a multi support excitation problem,



then  one  has  to  obtain  the  power  spectral  density  function  on  matrix  of  the  total

displacement and then from there we have to take out the relevant terms to form the

power spectral density function matrix S delta delta and which can be multiplied with the

stiffness matrix k and k t to obtain the power spectral density function of the member end

forces.

(Refer Slide Time: 44:56)

So, the these problems the power spectral density function of the absolute displacements

where and the bending moment where plotted in this figures.
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And the displacements and bend r m s values of the displacement and bending moments

where obtained for different quantities. 
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Next we come to what is called the modal spectral analysis, now since we use the mode

super position technique you uncouple the different equations.

(Refer Slide Time: 45:34)

Of motion of a multi degree freedom system and can simplify the problem that is a multi

degree freedom problem can be converted to a set of single degree freedom problems

and  for  each  single  degree  freedom  problem  one  can  obtain  the  responses  in  the



generalized coordinate and from there one can obtain the displacement in the structural

coordinate using the mode shapes.

So, ex extending that concept one can develop also a modal spectral analysis, the name

modal spectral analysis comes because we are using the mode shapes of the structures

for developing this method and the that is why it is known as the modal spectral analysis

and it has the same advantages and that we observed for the case of usual time domain

analysis and the frequency domain analysis.

So,  for  multi  support  excitation  we  have  these  standard  expression  that  we  have

discussed  in  connection  of  with  the  mode  super  position  technique.  So,  the  ith

generalized displacement velocity and accelerations are z z i z dot i and z double dot i

and m bar iis the ith generalized mass and j i T is the transpose of the first mode shape r

is the influence coefficient matrix associated with x double dot g considering x double

dot g to be a multi support excitation, then one can convert this to this form by dividing

by m bar i and these entire thing is called p i that is the generalized force at the for the ith

note.

So, or in other words this the ith modal equation and in that m bar i is defined in this

particular way that is already known to you now.

(Refer Slide Time: 48:24)



Once we have a single degree freedom equation for a mode i then one can write down z i

omega to be is equal to h i omega into p i omega and once we have this then we can

easily find out S z i z i very easily, that is the power spectral density function of the

generalized displacement z that will be is equal to h i absolute square multiplied S p i

omega and one has to simply find out what is the S p i omega ok.

Now, these S p i omega since it has a relationship like this, then one can obtain using the

formulation that is a y vector or y is equal to a multiplied by x vector x x double dot g for

that using that relationship we can find out S y that is the S p over here, that is the power

spectral density function of the force S p that will be equal to a into S x double dot g into

a t where a will be equal to these entire this j i T m r divided by m bar that will be the

matrix a. So, that one can easily obtain the value of S p and once you obtain the value of

S p then one can get the power spectral density function for z. Generally we rather than

obtaining  the  power  spectral  density  function  matrix  of  a  single  z  or  that  is  for  a

particular value of mode we wish to find out the entire z matrix that is S z z that is the

power spectral density function matrix of all the zs and say that matrix size will be equal

to m by m where m is the number of modes that is considered.

So, in that case we can write down this basic relationship, that is z vector will be equal to

a h matrix small h matrix which will be a diagonal matrix, because all the values of z

they are uncoupled. So, therefore, with this h matrix will be a diagonal matrix, p is a

modal load vector having the size of the same number of modes m and once we have that

then we can write down S z z to be is equal to h into S p p into h star T and this is this is

known these and these quantities are known only one has to find out what is the S p p

matrix.

Now, S p p matrix any term of the S p p matrix can be obtained from this relationship

that is S p i p j that is equal to j i T m r x double dot g into r T M T and j i oh sorry j j that

is between i and j the cross power spectral density function of force that is the modal

force p and modal force p j the cross power spectral density function between them. So,

that can be given by this equation and only thing is that you note is that this is the i and

this is the j.

So, one should only take note of these i and j over here that is this will be the ith mode

shape and this will be jth mode shape and rest of m r M and r etcetera they are known.



So, one can obtain the value of S p i p j mind you S x double dot g here is again a matrix

of the power spectral density function of ground acceleration and which requires again

the requires a determination of the cross power spectral density function terms, which

comes from the coherence function.

So, once we get S p i p j where terms or every term of the S p matrix then S z z is known

and once S z z is known then we can go back to our modal equation that is x is equal to 5

into 0 or more super position equation and if this holds good then S x x will be equal to 5

into S z z 5 t and the say if we take only the f m mode m number of modes S z z will be

m by m and there will be n by m and m by n respectively and we will get a power

spectral density function of the displacements in the structural coordinate and we will get

this matrix size will be n by n.
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So, we can see that in the case of the modal spectral analysis, what we do is that we have

the  same formulation  that  we have  done  for  the  mode  super  position  technique  for

solving the problem in the frequency domain and time domain, and extend it to obtain

the power spectral density function of the generalized coordinate by using small h that is

the frequency response function of a single degree freedom system. And we can obtain

term by term that is we can obtain the S z for or each mode or one can obtain the power

spectral density function matrix of S z z and the that would be given by this mind you

this S z z is not a diagonal matrix it will have cross terms. So, this cross terms denote the



correlation between the power spectral density functions of z 1 and z i and z j. So, I stop

at this.

(Refer Slide Time: 56:09)

Today and we will solve a problem that is the problem that we solved for a cable stayed

bridge  and  that  we will  take  an  example  to  illustrate  the  use  of  the  modal  spectral

analysis.


