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Few of our series on numerical methods in civil engineering, we will complete our 

discussion of the conjugate gradient method by talking about non linear conjugate 

gradients and we will start our discussion on partial differential equations. 
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So, up till now we have considered the conjugate gradient method exclusively for finding 

the minimum of a quadratic form right. We have not looked at the general nonlinear 

problem; however, with some modifications the conjugate gradient method can be used 

for general non linear functions f of x basically to find the minimum of a general non 

linear function f of x provided the gradient can be calculated at every point in our 

domain of interest right. 

So, provided we can calculate grad of f of x, we can still use the conjugate gradient 

method for general nonlinear problems with some changes. For general nonlinear 

functions, the conjugate gradient algorithm has to be modified to enable it to work what 

are the modifications necessary? We will first of all the residual can no longer be 



evaluated by r i is equal to minus A i because there is no constant matrix A anymore 

right. 
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To find the minimum of a general nonlinear function f of x we need to find a root of the 

nonlinear function gradient of f of x is equal to 0. So, we want to find the value of x such 

that gradient of f of x is equal to 0. If the minimum corresponds to x that is x is a root of 

gradient of f of x is equal to 0. Then as we go towards that root at iterate x power x i plus 

1 the residual r i plus 1 can be written as the gradient at the root at the exact root minus 

the gradient the current gradient at x i plus 1. And since we know that we add the exact 

root the gradient is got to be 0. So, gradient of f of x is going to be 0 and so, we get 

minus grad of f x i plus 1. So, that is going to be my residual. 

So, that is one that is one thing. So, we cannot calculate the residual using our previous 

formula. So, we have to calculate the residual directly from the gradient of the function. 

In addition, it is no longer possible to write a closed form expression again I have a typo 

for the step size as in alpha i is equal to r i transpose r i divided by d i transpose A d i 

right. we cannot any more calculate a closed form expression for this step size. 
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So, instead we compute the step size by solving a one dimensional minimization problem 

and what is that one dimensional minimization problem? Well it basically requires us to 

find the value of alpha in the search direction d, which is going to minimize my function 

f x i plus alpha i d i right, But this f x i alpha d i is fixed right, I am going along a 

particular search direction. So, d i is fixed for that iteration right. 

So, I will that expression that function f of x i plus alpha i d i becomes a general 

polynomial in alpha right. It becomes a general polynomial in alpha hence we are 

required to find the value of alpha which minimizes that that function. Also, recall that 

when the generate when the conjugate gradient method is applied to a quadratic function 

that was the second change that we need to make right first of all the residual has to be 

calculated differently the step size has to be calculated differently; thirdly the gram-

Schmidt coefficients are different why because when we use the conjugate gradient 

method for quadratic form the Gramm-Schmidt coefficient beta i j.  

we evaluated it as beta i j is equal to minus r i transpose A d j divided by d i transpose A 

d j and we took advantage of the Krylov structure of the subspace formed by the search 

directions to simplify the expression for beta i j to get beta i j equal to minus r i transpose 

r i by r i minus 1 transpose r i minus 1 right and we found that only one beta i j is 

required right. Only one beta i j is required the others we do not need to enforce because 



they are automatically orthogonal. The previous residuals are automatically, the previous 

search directions automatically orthogonal to the current residual. 
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In the absence of a constant coefficient matrix A for the general nonlinear equation how 

to choose beta i j? Becomes an open question there is no definitive solution to that still 

people are doing I mean people are proposing different formulas for that right. one 

option is to just use the use the expression which we which we use for linear conjugate 

gradient right for conjugate gradient applied to the quadratic form that is we use this 

expression for beta i j right. 

So, that is known as the Fletcher-Reeves algorithm the Fletcher-Reeves algorithm, which 

involve which is identical to that used for the quadratic form. And then there is the Polak 

Ribiere formula, which is a slight modification which gives beta i j is equal to r i 

transpose. If we compare these two you can see that it is slightly different this is mine 

this is this and that that right. So, it is slightly different right then there is other formula 

when since there is something called the Hestenes-Stiefel formulas Stiefel formula them 

there are other formulas also, but these are the main one. 
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Now the Fletcher-Reeves algorithm when is the when is the Fletcher-Reeves formula 

going to work best well it is going to work best near the solution why is it going to work 

best near the solution? Because near the solution whatever be my nonlinear function, it is 

going to behave pretty much like a quadratic right. So, when it is when it becomes a 

quadratic then my linear conjugate gradient applies exactly right. So, near the solution 

that Fletcher-Reeves formula is going to work well because the function behaves 

quadratically right. Any function near it is root it is you can pretty much approximate it 

very well by quadratic. 

So, the Fletcher-Reeves formula is guaranteed to converge if the starting point is close to 

the solution why because close to the solution it is going to be a quadratic the behavior is 

going to be more or less quadratic right. So, close to the solution the Fletcher-Reeves 

formula if you start with a if you start you are your start your iteration with a starting 

guess which is close to the minimum then the behavior of the function near the minimum 

is pretty much quadratic right. The Fletcher-Reeves formula is going to converge very 

well. But, since near the minimum the general nonlinear function f of x is accurately 

approximated by a quadratic since for a quadratic form the Fletcher-Reeves formula part 

of the linear conjugate gradient algorithm is guaranteed to converge this is obvious right. 

However, far from the minimum the function may be very different from a quadratic. In 

that case convergence is by no means guaranteed, if we use the Fletcher-Reeves formula 



for a general nonlinear function and we start far away from the true solution then there is 

no guarantee that we are going to converge because the behavior is no way near 

quadratic right. 
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The Polak-Ribiere formula for beta i j is found to converge in most cases it is its 

converges in most cases irrespective of the starting point right. Though in rare situations 

it can result in the algorithm going into an infinite loop and failing to converge basically 

it starts cycling right it cannot converge right since neither formula is full proof the 

restart concept is indispensable in nonlinear conjugate gradient iterations. This is 

probably the most important concept at the restart concept when it comes to nonlinear 

conjugate gradient iterations. 

Basically it means that the effort to create search directions conjugate to the previous 

search directions has to be abandoned at certain point. when we think that we are no 

longer converging right or we have exceeded n number of iterations right, we know 

recall that the conjugate gradient algorithm we it is it is an n dimensional space we 

construct n conjugate directions right that is there are only n conjugate directions right. 

So, suppose my iteration takes more than n it goes to n plus 1 right it still does not 

converge then; obviously, the new directions that I am using they are conjugate 

directions right those I have already exhausted the all the possible conjugate directions n 

conjugate directions have already been exhausted. 



So, there is no point. So, I am no longer doing the conjugate gradient method. So, at that 

point I stop, I stop my iteration and restart my algorithm how do I restart? well I said the 

calculate the current value of the residual set it equal to the search direction like I did 

when I started my conjugate gradient and then I start the iteration again right. Basically, 

it means abandoning the effort to create search directions conjugate to the previous 

search directions and starting a fresh assuming the current values of the residual vector to 

constitute the new search direction d 0. 
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So, convergence with the Polak Ribiere formula can be guaranteed if we restart 

whenever the Polak Ribiere formula predicts a negative value for the beta i j. suppose, I 

got a Polak Ribiere beta i j which is negative. So, at that point I know that my Polak 

Ribiere formula is giving arbitrary result. So, I better abandon it and start again with the 

with the current residual as the first search direction. Since the conjugate gradient 

method can generate only n search directions where, n is the problem dimension an 

obligatory restart should be performed after n iteration right. The following is the 

summary of the nonlinear conjugate gradient algorithm. 
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So, we start with initializing our initial search direction d 0 with the residual at r 0 right. 

Then for each I each iteration we find the alpha that minimizes f of x i plus alpha i d i at 

this stage I assume the already know d i right. So, I find the minimum of this function 

this function nonlinear function in alpha right, once I find the alpha i update the new 

iteration; the new iterate value x i plus 1 is equal to x i plus alpha i d i. So, once I know x 

i plus 1, I calculate the gradient now that is that is some strange notation right. So, I do 

not need that f prime here right I already have that gradient right. So, again I apologize 

for the typo. 

So, I find gradient of f at x i plus 1. So, I calculate their residual at r i plus 1 once I 

calculate the residual I either use my Fletcher-Reeves formula or my Polak Ribiere 

formula to calculate the new beta i j. once, I get my new beta i j I found out my new 

search direction right. and, I make sure that any time I exceed n iterations I start again 

right from here right you can see that this Polak Ribiere beta i j, I have a max here this is 

to ensure that it is never negative right if it is negative then it is bad right. So, if it is if it 

is negative with 0 right that tells me that I better restart. Because, I am going to use I am 

not going to use any search direction to get a new search direction. 
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So, convergence for nonlinear conjugate gradient summarizing conjugate gradient 

nonlinear conjugate gradient we are guaranteed to there is no guarantee right then there 

is no all the all the convergence criteria we have obtained for the linear conjugate 

gradient that just goes out of the window right. There is no guarantee right the less 

quadratic the function f of x the faster is the loss of conjugacy of the search directions 

right. So, we are guaranteed to converge in n, n iterations if my search directions are 

conjugate if my search directions loose conjugacy no guarantees right and here there is 

no guarantee of conjugacy at all right. 

Also, the recall this is a general problem for all general nonlinear equations, which is that 

all general nonlinear equations there is no unique minimum no global its very hard to 

reach a global minimum right. So, you get to the local minimum to which you start 

closest right. So, we can we will get we will converge if we converge we are going to 

converge to a local minima depending on our starting point and as mentioned the 

generalized line search may be required to choose the step size alpha to minimize f of x i 

plus alpha i d i in direction d i. 
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So, I talk little bit about the generalized line search problem the objective is to find the 

zeros of d d alpha f of x i alpha i d i. So, I want to minimize f of x x i plus alpha i d i. So, 

how do I minimize I said the derivative with respect to alpha to 0 right. So, that says the 

gradient you take the calculate the gradient and you take the projection of that in the d 

direction right. You take the projection of that in the d direction you get a polynomial n 

alpha right you get a polynomial n alpha and then you can use the Newton Raphson 

method. So, this is a polynomial a general polynomial in alpha you can solve it using the 

Newton Raphson method to solve for the zeros of this polynomial in iterative fashion. 

So, how do you do that well you expand the function f of x i plus alpha i d i in Taylor 

series about x i up to the quadratic terms, you write f of x i plus alpha i d i approximately 

equal to f of x i plus alpha gradient of f transpose alpha d i gradient of f transpose x i plus 

alpha square by 2 d i transpose gradient of x i d i right. So, it is up to quadratic term and 

then we may have to find alpha i such that then why do we do that? I did that because 

this offers us some insight into the convergence of the conjugate gradient method let us 

follow through and we will see right. So, from this equation we set this to 0 we take the 

derivative with respect to alpha and we set this to 0 right. So, we get grad f transpose x i 

d i plus alpha d i transpose, this is the Hessian right the second derivative right Hessian d 

i equal to 0 right and. So, this is an equation which is which I can evaluate to obtain my 

alpha and what is that. 
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So, denoting grad f transpose x i at alpha equal to 0 as the Jacobian j and grad square f x 

i at alpha is equal to 0 as the Hessian H we have to solve for the following equation for 

alpha i which is this. Now, compare this equation compare this equation with the 

equation I had for the linear conjugate gradient and that is going to be very revealing or 

did I have that equation right. There, yes I had that equation right that this was my 

equation for the linear conjugate gradient. So, what is what do I have let us compare 

terms. So, this is j i transpose right, j i transpose I know is nothing, but this right it is the 

Jacobian, what is this is nothing but the residual right we saw that right gradient; gradient 

of f that is very similar to the residual right then I have d i. 

Here, but I have r i here but we know that we get the search directions d i from the 

residual r i right. So, that is also it is a very similar look at the bottom we have d i 

transpose here then we have the constant matrix A and we have d i. So, instead of A the 

major difference is that instead of A I have the Hessian I have the Hessian here and. So, 

that is the if it is the only difference is that in case of linear conjugate gradient the 

Hessian is a constant matrix A. Here the Hessian is a variable matrix right it is a function 

of it is a function of x i right. So, that is the difference. So, if So, this is exactly what I 

said right the. So, we can see there is a distinct resemblance of this equation to the linear 

conjugate gradient, if H can be regarded as an equivalent of the constant coefficient A in 

the linear case right. 



(Refer Slide Time: 18:32) 

 

So, for nonlinear conjugate gradients the search directions are conjugate if they are 

conjugate with respect to the Hessian matrix because the Hessian here is plays exactly 

the same role as the A matrix. So, if the directions of conjugate with respect to the 

Hessian matrix right then the conjugate gradient method is going to do. Well, it is going 

to very close to its behavior in the linear and for the linear conjugate gradient situation 

right. Only problem is; however, unlike linear conjugate gradient the H matrix which in 

case of linear conjugate gradient is a constant matrix A is not constant it varies from 

iteration to iteration and the faster the variation of H the faster the search directions lose 

conjugacy. 

 The more constant H is the greater the chances of my retaining Conjugacy and this also 

tells me why closer to the solution I have I have better convergence. Because, closer to 

the solution my function is going to behave like a quadratic it is going to behave like a 

quadratic the Hessian got to be constant right. So, closer to the solution my Hessian is 

going to be constant. 

So, there is a better chance of my conjugate gradient directions maintaining conjugacy, if 

they maintain conjugacy all the good things follow right all my convergence properties 

they follow and I can I am assure to converge right. So, the closer x i is to the solution 

the function f can be more accurately approximated by a quadratic, when the Hessian 



approaches a constant matrix and the iterations become similar to linear conjugate 

gradient iterations right. 
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Let us talk little bit about preconditioning for the nonlinear conjugate gradient method, 

as with the linear conjugate gradient method convergence for the nonlinear algorithm can 

be improved by preconditioning right. We said that if we multiply, if you multiply by 

coefficient matrix with a certain operator with certain matrix or we operate on that 

coefficient matrix with a combination of matrices right and we get a coefficient matrix, 

which has a condition number; which is smaller than my original coefficient matrix a 

then I am going to get better convergence. 

 Because, it is the convergence of the conjugate gradient method depends on the how 

well conditioned my coefficient matrix is how close my Eigen values are to each other. 

So, best situation is when the Eigen values are like they are grouped together right when 

the Eigen values are grouped together that gives us the best convergence situations like 

that right. 

So, this all an attempt to improve the condition number of my coefficient matrix. So, 

how do we use? How do we condition the coefficient matrix? in case of nonlinear 

conjugate gradient well sometimes what people do is to use the Hessian matrix right. To 

take the Hessian matrix throughout all the of diagonal terms and keep the diagonal terms 

if you keep the diagonal terms and if all the diagonal terms are positive then I must 



assured that my precondition is symmetric and positive definite right. So, if the condition 

was the precondition has to be symmetric and positive definite. So, if I do that then I am 

assured that that is that is a valid preconditioning right. If we cannot do that well just do 

not do any preconditioning never try a precondition, where you have a negative element 

on the diagonal because that is the sure prescription for divergence right. 

So, that is all I have to say about the conjugate gradient algorithm and that winds up our 

discussion on gradient based methods and it also winds up our discussion on methods for 

equations solving. So, that is all I am going to talk about equation solving for the rest of 

this course. So, the rest of this course we are going to focus on how do we get those 

equations, those equations that we get those matrix equations that we try to solve well 

how do we get them right. 

(Refer Slide Time: 23:09) 

 

So, up till now we have concentrated on methods of solving linear and nonlinear systems 

of equations. As mentioned in lecture, one these systems of equations arise from 

mathematical models of physical phenomena. In civil engineering applications more 

often than not the mathematical tool that best models these phenomenon are differential 

equations right. So, they establish relations between rates of change of quantities of 

physical interest for instance displacement velocity density pressure and things like that 

how these things vary, typically in response to some external excitation right external 

excitation or flux or whatever. 
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These physical quantities often depend on more than one spatial dimension as well as 

time right hence the rates of change that is the derivatives are most often with respect to 

multiple spatial dimensions as well as time right. So, these derivatives are derivatives of 

multiple independent variables right deal with and. So, we come with relations between 

partial derivatives and hence with partial differential equations. Now, partial differential 

equation is a vast subject analytical treatment of partial differential equations that there 

are entire courses which people teach it for those things right. I cannot even I cannot 

even attempt to try do try to cover any portion of it with any reasonable degree of 

coverage in during this course. 

So, what a but I but I do think that when someone is trying to solve partial differential 

equations numerically, it is very important that at least we understand the basics of 

partial differential equations right and at and at least we understand some basic analytical 

tools that people can use to solve partial differential equations right. So, in the in the next 

few lectures we will talk about some simple analytical tools for solving partial 

differential equations, which are valid for a wide range of partial differential equations. 

Before actually embarking, on how to do the numerical formulation right how to get that 

get the get from the partial differential equation to the matrix equation ? Right that step 

we are going to postpone it for some time and talk about some more brief introduction to 

analytical methods for partial differential equations. So, many of this partial differential 



equations that arise in civil engineering applications are of second order and the most 

general second order partial differential equation in two independent variables can be 

written as the following f of x 1 x 2 phi x 1 phi x 2. So, you can see that this is a second 

order partial differential equation why? Because the highest derivative is of order two.  

So, the subscript denotes derivative with respect to x 1 and x 2 right the highest 

derivative is of order two. So, but this function is a perfectly general function there is no 

guarantee that is that is going to be a linear function. it can be a nonlinear function of the 

derivatives right, but when it comes to nonlinear on linear partial differential equations 

we are not even going to try to try to solve them; try to talk to talk about analytical 

solutions we are going to do numerical methods that is the whole purpose of this course 

right. But, at least for linear partial differential equations we want to look at some 

common analytical methods that can be used for solving them. 
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The above equation can be linear or nonlinear, non linear partial differential equations 

arise in civil engineering applications but their analytical solution is complex and often 

impossible they have to be solved numerically giving rise to systems of nonlinear matrix 

equations which we have already seen how to solve right; however, the mathematical 

process of obtaining the governing differential equations of a physical problem and then 

transitioning from the differential equations to the matrix equation is very common for 

both linear as well as nonlinear phenomena. 



So, if we understand that basic mechanism and it is common to both linear and nonlinear 

equations right the equations themselves are different the solution methods; the matrix 

solution methods are different right we have seen that right Newton Raphson conjugate 

gradient steepest descent those are all for nonlinear equations while straightaway 

Gaussian elimination or link can be used for linear equations right. 

So, the solution methods are very different the equations are very different but to go 

from the equations to the solution method, the process is not that different right some 

differences but not that different right. So, the process we are going to look at for linear 

equations right hence for ease of understanding we will examine this process linear 

partial differential equations right. 
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So, so the previous equation that we show that was for the general non linear equation 

the second order non linear equation if it is a linear equation then in two variables then it 

has this form. this is the general form of the linear equation where now a b e d e and f are 

all constants right, if a is a function of either of the independent variables or if for that 

matter any of these constants or functions of either of the independent variable we are no 

longer going to have a linear equation. 

So, this is what makes it phi is the of course, physical quantity of interest whose 

functional dependence on the two independent variables x 1 and x 2 are what we seek to 

find right. So, we are given this equation and we want if we want to solve it analytically 



we want people to tell us what is the function what is the functional form of phi in terms 

of x 1 and x 2 right a b f are constants with no dependence on the independent variables 

x 1 and x 2 otherwise the relationship would be nonlinear for different values of the 

above constants and for particular choices of the independent variables we get the 

following three PDEs right which are very very sort of generic PDEs right. 

(Refer Slide Time: 30:34) 

 

So, what are they well when one of the independent variables is time and the other is 

space remember that we are now considering only two independent variables there is no 

restriction that on that we can consider second order partial differential equations in more 

than two independent variables. But, for the for the time being let us consider that we are 

considering two independent variables right and one of them is space and the other is 

time. 

So, if that is true and then this these constants these constants a b e d e and f they sorry 

this should be c again this is a typo right this is a c right. So, if that is. So, these functions 

have the following values a is equal to 1 b is equal to 0, c is equal to minus 1 by c square 

which is related to I mean little complex notation. But, this c is very different from this c 

right this c is the wave speed right since we are taking about the wave equation this is the 

wave speed I did not want to change the symbol because this is sought to be universal for 

wave speed and the d, e and f are equal to 0. So, all the cross terms are there is no cross 

term and also the single derivatives also vanished right. 



So, in that case this equation this equation becomes my wave equation right this equation 

becomes the wave equation. For a equal to K, K being the diffusivity right k being the 

diffusivity e equal to minus half d c b and f equal to 0 we get the diffusion equation So, 

this equation if you are if for civil engineers this is basically your equation of motion 

right. This is exactly the equation of motion which you encounter in mechanics right 

solid and structural mechanics this is the equation of motion this for you for civil 

engineers. This is probably you do not encounter it too much in structural mechanics, but 

you encounter it in heat transfer right where you consider heat flow right diffusion of 

heat right the phi becomes the right. So, in that case that becomes the heat transfer 

equation. 

So, transient heat transfer that is the equation, when the evolution of phi does not depend 

on time. So, you can see here we have independent variables t and x time and spatial 

dimension when the evolution of phi does not depend on time that is the independent 

variables are spatial variables we get for a equal to c equal to one and b equal to d equal 

to e equal to f equal to 0 Laplace’s equation right; Laplace’s equation, which Laplace’s 

equation is nothing. But, the wave equation if I ignore the transient term right. So, if you 

solve the equations of motion instead of solving the dynamical equations of motion if 

you solve the make the quasi static assumption we say that my solution my phi my 

variable phi is varying. So, slowly thus del two phi del t square is very small right. So, 

this part becomes zero. So, I get this right. So, that becomes that. So, I get Laplace’s 

equation. 

So, these are three main types of equation and we will see later on slightly later on that 

they have very they map onto certain things, which are known as the canonical forms. 

The canonical forms of second order partial differential equations each of these 

equations is a representative of a canonical form of a partial of the second order partial 

differential equation. 
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So, for 2D or 3D problems the number of independent variables increase the 3D wave 

equation for instance is this right. So, instead of x 1 I have x 2 x 2 x 3 right second order 

partial derivatives with respect to x 1 x 2 x 3, which I can write as 1 by c square l del 2 

phi del t square is equal to Laplacian of phi well that is the Laplacian operator right. 

So, there is three partial differential equations we considered like the wave equation the 

diffusion equation and Laplacian equation are modeled most of the physical phenomena 

of interest in civil engineering they are also instances of the three canonical forms of 

equation star which is my this equation right. So, they are examples of the three 

canonical forms of my general second order linear partial differential equation how can 

we get the canonical forms well you can get the canonical forms by transforming linearly 

the variables in star right by doing a linear transformation. 
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So, how do we do that well we first group the terms involving the second derivatives in 

star and treat them as arising from the action of a linear operator L acting on phi. 

So, these are the terms which involve the second derivatives right second derivative with 

respect to x 1 with respect to x 2 and this is the cross term and we say that to get this by 

the action of some linear operator acting on phi right why is it a linear operator well 

because it satisfies linearity l of phi 1 plus phi 2 is equal to L of phi 1 plus l of phi 2 l of 

alpha phi is equal to alpha l of phi right. So, it satisfies definition of linearity. So, this is 

like a linear operator right and I rewrite this operator in this way. So, I have this row 

matrix I have this little row matrix del del x 1 del del x 2 right and then I have this little 

two by two matrix a b b c and then I have this color matrix del del x 1 del del del x 2. So, 

you can see that if I carry out this matrix vector the sorry the vector matrix vector a 

multiplication I am going to get exactly that equation. 

So, next we consider a transformation of variables right we say that we are going to go 

from x 1 x 2 to another set of variables y 1 y 2 right. And this t is my transformation 

matrix. So, y is equal to t of x right or y 1 y 2 is equal to. So, I wrote out the 

transformation matrix in full form. So, just let us think of just as a transformation from x 

1 x 2 to y 1 y 2. So, it is clear that using the chain rule using the chain rule del del x 1 

equal to del del y 1 del y del y 1 del x 1 plus del del y 2 del y 2 del x 1 right and what is 

del y 1 del x 1 that is nothing, but t 1 1 from this equation right. So, does this equation 



gives me y 1 is equal to T 1 1 x 1 plus T 1 2 x 2. So, del y 1 del x 1 equal to T 1 1 del y 2 

del x 1 is equal to T 2 1 right. So, that gives me del del x 1 in terms of del del y 1 del del 

y 2 similarly I can get del del x 2 in terms of del del y 1 del del y 2 right. So, what do I 

get? 
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So, I can write del del x 1 del del x 2 phi is equal to this T 1 T 2 1 T 1 2 T 2 2 just 

grouping them together into a matrix again right. So, basically I am rewriting these last 

two equations as matrix equation right T 1 1 T 2 1 T 1 2 T 2 2 as del del y 1 del del y 2 

which is nothing but T transpose del del y if del del y. I denote this column vector del del 

y 1 del del y 2 this is equal to T transpose del del y because my t had T 1 1 T 1 2 T 2 1 T 

2 2 and this matrix has T y 1 T 2 one T 1 2 T 2 2. 

So, this I get a relationship between the partial derivatives right using the above 

transformation of variables what does l phi become well l phi becomes, let us look at l 

phi again. So, it is del del x 1 del del x 2 right. So, that I can write as del del y 1. So, this 

is just the transpose of this equation right. So, this becomes del del y 1 del del y 

transpose t right. So, this becomes del del y transpose T and then I have my little sorry I 

have my little matrix a b b c. So, that remains the same that remains the same and then I 

have del del x 1 del del x 2 which I know is nothing, but t transpose del del y right. So, I 

get it in this form right. 



Now, look at this matrix a b b c this matrix is symmetric right this matrix is symmetric 

and because it is symmetric I know that it is Eigen values cannot be imaginary numbers 

it is Eigen values got to be real numbers and it is Eigen vectors form an orthonormal 

basis right this form an orthonormal basis. So, I can do a spectral decomposition of that 

matrix I can find it is Eigen values I can find it is Eigen vectors and I can write that 

matrix that matrix a b b c denoting it as M right. 

(Refer Slide Time: 40:49) 

 

Denoting it as M I can write its write it as TMT transpose right. So, that is I am just 

rewriting that equation right am just rewriting that equation after replacing this a b b c by 

M right, but then the interesting part is that follows right because I because M is a 

symmetric matrix I can do a spectral decomposition and I can write it as V lambda V 

transpose right where V is a matrix its columns are the Eigen vectors of M right and 

lambda is a diagonal matrix whose diagonal elements are the corresponding Eigen values 

right. So, this is this is this is similarity transformation applied to symmetric matrices 

because it is symmetric. So, V transpose instead of V inverse right. So, is. 

So, any way I can write as M is equal to V lambda V transpose right and then So now M 

become So, now, l phi is equal to this vector times t times V lambda V transpose T 

transpose times this vector right now what can I can I am free to choose my 

transformation matrix right I can choose any transformation I like right I am going to 

choose whichever transformation simplifies my equation most or best right. So, if I 



choose the transformation matrix to be the matrix V transpose then what happens then if 

I replace T by V. So, I get a T by V transpose I get V transpose V lambda V transpose V 

right and we know that the matrix V since these Eigen vectors form an orthonormal basis 

the matrix V is a orthogonal matrix right. 

Since it is an orthogonal matrix V transpose V are to be equal to the identity matrix right. 
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So, eventually we get l phi is equal to del del y 1 del del y 2 lambda del del y 1 del y 2 

phi right and notice that the matrix lambda is a diagonal matrix. So, that is the biggest 

advantage we are getting. Because now, lambda is a because lambda is a diagonal matrix 

and we could bring it in this form it is found that there are no cross terms right. The cross 

derivatives do not there no more cross derivatives right and we arrive at the equation we 

only contain there are no cross. So, we only have derivatives with respect to y 1 and y 2. 

So, there are no cross terms rights because we did this transformation and because we 

choose our transformation matrix to be the matrix of Eigen vectors of my little 

coefficient matrix transpose that is why we could get this simplification right. 

So, if we can do that we get we get this uncoupling right we get rid of the cross 

derivatives right; however, we still need to find lambda 1 lambda 2 find lambda 1 

lambda 2 well that is just easier. Now, because we have to find we saw if the Eigen value 

problem two by two Eigen value problem find out lambda. 
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So, we saw if the Eigen value problem this is my Eigen value problem determinant of a 

minus lambda b b c minus lambda is equal to 0 resulting we get a polynomial and this 

case in situ two by two it is a polynomial is a quadratic we solve for lambda we get that 

equation in terms of a and c right. 

So, you look at that equation if you look at the term under the square root, it actually it is 

you can write it as a sum of two squares right; you can write it as a sum of two squares 

and since you do that it is always going got to be positive right. It is also always got to be 

positive and hence the Eigen values are always real which we already knew right 

because this is a symmetric matrix. So, it is a Eigen value is got to be real, but this is just 

we are seeing that. 

Now, consideration of the above equation gives rise to three cases what are those three 

cases? well one case is when b square minus a c is positive right when b square minus a c 

is positive you can see that the second term is larger than the first term right because this 

contribution b square minus a c is going to increase the term within the square root right. 

So one of, so at least one of the terms is going to be negative right while the other term 

for the positive sign is going to be positive right. So, b square minus a c is positive the 

second term is larger than the first term hence one of the Eigen values is positive while 

the other is negative. If b square minus a c is negative the second term is smaller than the 

first term in that case we are guaranteed that both are Eigen values are going to be 



positive right; value of b square minus a c is equal to 0 we are sure that one of the Eigen 

values is going to be 0 because a plus c minus a plus c that is going to give me 0 and a 

plus c plus a plus c that is going to be the positive Eigen value right. So, each of these 

cases correspond to a canonical form for the second order linear partial differential 

equation. 
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When is a condition a is satisfied; when condition a is satisfied the partial differential 

equation is said to be hyperbolic right we. So, that that is just a definition right when that 

condition is satisfied the partial differential equations what is that condition? Well it is 

Eigen values are of opposite signs one of them is positive one of them got to be negative 

right how do we ensure that we said lambda one the first Eigen value is some square and 

the second Eigen value is the negative of its square say it got to be a negative number 

right recall that our original equation the in the variables x 1 and x 2 was like this it was 

L phi plus 2 d phi x 1 plus 2 e phi x 2 plus f phi equal to 0 right . 

The uncoupled expression for l phi after transformation to y 1 and y 2 has already been 

obtained. So, after we did the transformation that we did we know that this l phi is going 

to be uncoupled right the term involving the second derivatives the L phi term the L phi 

contribution it is more than one term that is going to be uncoupled that was a cross 

derivatives are going to vanish right but so but this so we have to what we have to do we 



have to transform this single derivative the first order first order derivatives into the y 1 y 

2 space right we have to do that right we have to be consistent right. 

So, the remaining first order derivative terms need to be transformed using the same 

mapping right which was T T is equal to V transpose using that mapping right. 
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So, recall that del del x 1 del del x 2 is equal to t transpose del del y 1 del del y 2 and t is 

we know is the matrix of Eigen vectors transpose. So, if my Eigen vectors v 1 1 v 2 1 

correspond to my Eigen value lambda 1 and my Eigen vector v 1 2 and v 2 2 corresponds 

to my lambda to my Eigen value lambda 2 then I can write it like this right. 

So, once I do that my entire original equation is now transformed in terms of my new 

variables y 1 and y 2 right. 
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And, what form does it take well it takes this form lambda square del 2 phi del y square 

minus nu square del 2 phi del y y 2 square. So, this is the l phi term that we saw earlier 

right that is del phi term and this is what happens to my first order partial derivatives 

when I write them in terms of y 1 and y 2 in rather than x 1 and x 2 right and then I pull 

out the coefficients of del phi del y 1, I get this term involving 2 d v 1 1 plus 2 e v 1 2 

right and similarly I pullout the coefficients of 2 del phi del y 2 I get 2 d v 2 1 1 plus 2 e 

v 2 2 right plus I have the term f phi right I have the term f phi right and then I do just 

some again, I want to replace this 2 d v 1 1 plus 2 e v 1 2 by mu D 2 d v 2 1 2 e v 2 2 by 

nu e right and I replace small f by capital f I get this equation right I get this equation at 

the bottom of the slide right. 
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Then I do a further transformation of variables I say that I am going to replace y 1 y 2 by 

new variables alpha and beta. And this is how I define my alpha and beta alpha equal to 

y 1 by lambda beta equal to y 2 by nu right and then I get this form del 2 phi del alpha 

square minus del 2 phi del beta square plus d times first derivative plus e with respect to 

alpha e times first derivative with respect to beta plus that term then we perform a third 

transformation we replace phi by this function in terms of capital phi right and if we do 

that we get a final form of this equation right the final form of this equation. 

And if you look at the term within brackets on the left hand side which is of the same 

form as the wave equation right It is In fact, the canonical form of the second order 

hyperbolic partial differential equation right it is the. So, all hyperbolic partial 

differential equations can be obtained from this form right. So, whether it is the 

Helmholtz equation the wave equation any equation any hyperbolic second order partial 

differential equation you can get from this form. So, this is the canonical form of the 

hyperbolic partial differential second order linear partial differential equation right. 
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Similarly, we can do similar things right when b square minus a c is less than 0 and both 

the Eigen values are positive then the partial differential equation is said to be elliptic, it 

is an elliptic partial differential equation if we perform very similar substitutions as in the 

hyperbolic case we get this equation. del 2 phi del eta square plus del 2 phi del rho 

square plus k phi equal to 0, which is again the canonical form of the elliptic equation. 

So, all elliptic equation whether be Laplace’s equation or Poisson’s equation any elliptic 

equation you are going to get from this canonical form of the of the elliptic equation 

right. 
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And finally, for the condition when b square minus a c is equal to 0 that is when one of 

the Eigen values is 0 the partial differential equation is said to be parabolic partial 

differential equation. Again, performing substitutions very similar to what we perform 

for the hyperbolic case we can get it is canonical form, which is del 2 phi del rho square 

is equal to d del phi del eta, which is the canonical form of the parabolic equation and 

this equation if you look at that that is very similar to the diffusion equation. 

So, we looked at it is a linear second order partial differential equations; we looked at the 

canonical forms. Next lecture, we are going to talk about some how do we get some of 

those physical equation may be we look at the wave equation right how do we get that 

equation? And then we will try to find look at some simple analytical techniques for 

solving that those equations right before actually moving on to numerical techniques. 

Thank you. 


