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Lecture - 27 

Differential Operators 
  

In lecture 27 of our series on numerical methods in civil engineering, we will continue 

with our discussion on differential operators, recall we considered operators operating on 

a sequence y is equal to y 0 y 1 through y n.  
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and we define two operators, we define the shifting operator which we denoted as E and 

which operates on the each term of the sequence and shifts It to the shifts each term to 

the and we also define the difference operator delta which creates a new sequence by 

taking the difference between each term In the sequence and Its next term. So, for y for 

in the 0th position, we had y 0 in my original sequence in the new sequence it will be y 1 

minus y 0. So, the term on the minus the original term similarly, for other terms in the 

sequence. 

It can be shown that k operations of the differential operator delta, lead to a new 

sequence the n plus 1th term of which is represented by the action of delta. K times on 

the n plus 1th term in the original sequence y n. So, the n plus 1th term in the original 

sequence is y n because, it starts from y 0 and what I am just saying Is that. If you 



operate k times on that operator that is the resultant sequence is the action of delta, k 

times on the n plus 1th term in my original sequence which was y n.  
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So, the result Is represent as you can understand If you operate k times on the y n you are 

going to get more and more terms. This first time when you operate delta on y n you are 

going to get y n plus 1 minus y n If you operate again on that as you operate on y n plus 

1 as well, as y n similarly, you the terms become larger and eventually, the result of 

operating k times on y n with the delta operator can be represented by something like 

this. We saw this expression last time and we also tried to give a proof on that using 

Induction. So, here I am just mentioning the final result. So, that was where we stopped 

last time. 

Now, let us take a step back and recall that delta y n delta y Is equal to y n plus 1 minus y 

n and since E y Is equal to y n plus 1. We can write symbolically delta y Is equal to E 

minus 1 y because, E operating on y Is going to be y n plus 1 minus y n; So that, Is the 

equivalent to the operating on y with y n with delta, So, we can write this delta Is equal 

to E minus 1. We can write delta Is equal to E minus 1 and using this symbolic notation 

the above theorem, the above theorem meaning this result this result can be written as 

delta k Is equal to E minus 1 k, because they are equivalent, So, we can write this as well 

as E minus 1 k operating on y n. 
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So, sometimes it makes Its yields a lot of Insight, If we look at a sequence y 0 y 1 y 2 y 3 

y 4 and then see the results of operating on the sequence repeatedly with the delta 

operator and arrange the terms In this fashion. So, here what I have done I had originally 

y 0 y 1 through y 4. 

 First I operate on this. So, delta y 0 that is equal to y 1 minus y 0 delta y 1 which Is 

equal to y 2 minus y 1 delta y 2 y 3 minus y 2 and delta y 3 y 4 minus y 3. So that, Is 

operate first on with once the delta operator with the difference operator once then If I 

operate again, So, let us see what del 2 y 0 would be that would be del y 1 minus del y 0 

del 2 y 1 would be del 2 y 2 minus del y 1 del 2 y 2, would be del y 3 minus del y 2 

similarly, If you operate 3 times del 3 y 0 Is going to be del 2 y 1 minus del 2 y 0 del 3 y 

1 del 2 y 2 minus del 2 y 1 and del 4 y 0 Is del 3 y 1 minus del 3 y 0. 

So, If you arrange this sequence, this difference the action of the difference operator on 

the sequence the repeated action of the difference operator on the sequence In this 

fashion Sometimes It yields a lot to It gives a lot of Insights for Instance In the next 

problem.  
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suppose, my original sequence was 0,0,0,1,0 and I operated on that repeatedly with my 

difference operator and you can see that after I operate first time I get 0,0,1 minus 1 

second time I get 0, 1 minus 2, third time I get 1 minus 3, fourth time I get (( Refer Time, 

05:48)) minus 4. So, what does this tell me this tells me that, If my original sequence was 

actually 0,0,0,0,0 and then I Introduced a minor perturbation to that sequence In the 

fourth term In the sequence I made It 1. 

So, If my original sequence was 0,0,0,0 all the terms were 0 In my sequence, If I 

operated on that sequence with the difference operator 4 times what would I get? I would 

still get 0 Del 4 y 0 would still be 0. But, then If I Introduce some minor perturbation one 

term In the sequence undergoes a slight change, It changes from 0 to 1 In this test. The 

fourth term In the sequence changes from 0 to 1 then If I look at the difference way 

down the road after I have taken repeated differences you can see that the difference Is 

much larger It has become amplifier that minor change that change In the fourth member 

of the sequence that change In 1 has now become minus 4. 
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So, this shows the effect of perturbation In 1 element on the sequence, which changes by 

just 1 element then after difference operator it, has grown 4 times. So, this tells us why In 

any numerical method you will see that the If you look at the derivative, the derivative 

the error In the derivative Is always higher than the error In my original variable for 

Instance, If I know many of you are familiar with the finite element method where 

suppose, we have the primary variable as the displacement, So, and then we are 

Interested If you look at the results of the solution, we are look at the displacements we 

are look at this strange, we look at this stresses; So, suppose there Is an error In the 

displacement and then we look at the error In the stresses the error In the stress will 

always be higher than the error In the displacement. Whether the error In the 

displacement Is due to discretization error or It Is just a truncation error that error In the 

derivative will always be higher this exactly shows why because, repeated operations of 

the difference operator, It always multiplies It always scales magnifies the error. 

So, this sort of approach allows us to study the effect of errors In Initial data on 

derivatives. If there Is a ((Refer Time-08:27 )) here, If we can relate the derivatives to the 

difference operators I have shown this for the difference operators but, when If you have 

to claim If I claim this for the derivatives I have to relate the derivatives to the difference 

operator, In the terms of that you can do that; So, the same thing carries over for 

derivatives and error In the Initial data It gets multiplied, It gets scaled several times then 

more times you take the derivatives more Is the error scaled by. It also leads to the 



conclusion that the error in the derivative Is always higher than the error In the Initial 

data. 
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 up till now we have looked at difference operators on a sequence, we can as well operate 

we can as well apply these different operator, In a function So, In case of a known 

function evaluation of success of higher order differences leads to the following 

conclusion. We can show that also, it is seen that differences decrease rapidly as the 

order of the differences Increase until the differences becomes small enough that round 

of operators, the round of error dominates. So, It Is now that If you If Instead of a 

sequence I look at a function, If I see, If I take repeated differences If I take repeated 

differences on a function, It Is found that the differences decrease rapidly and then until 

finally, the differences are only different by the round of error. So, If In my original 

function values I had certain round of error then after repeated differences what is going 

to show up is just the round of error. 

Such behaviors typical of difference schemes of well behaved functions, In the following 

table which shows the evaluation of successive difference operators of the function sin x 

So, If we looking at the function sin x over the range x belongs to 1 point 3, 0 and 1 point 

3, 6 and we are evaluating It at step size of point of 0, 1; we can see that after we take the 

fourth difference the It Is totally dominated by the round of error In the values of y let us 

look at this little table .  
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So, here now we are looking at difference operators on a sequence on a function rather 

than a sequence and the function that we are considering Is sin x and I am evaluating that 

sin x over an Interval from 1 point 3 0 to 1 point 3, 6 and I am evaluating It at steps of 

point 0,1; So, 1 point 3, 0 1 point 3, 1 these are my values at which I am evaluating the 

function sin x and these are the values, the results of sin x , these are the results of sin x 

and here I have taken the difference between this and this and this and this and so on and 

so forth. 

Then I have taken the difference again, So, In this case this minus, this becomes that, this 

minus this, becomes this minus this, becomes that and then I have taken the difference of 

third time you can see that these are becoming smaller and smaller these magnitudes are 

becoming smaller and smaller the magnitudes of these differences are becoming smaller 

and smaller until they are so small that this may be as small as the round of error 

Involved In the calculation of this. 

If, we have calculated this with a round of error up to the fourth decimal place then this 

difference Is the same as the round of error which I used round of which I used In my 

calculation of this sin x. So, this is this may become as small as the round of error is that 

clear. So, Let I hope It Is clear. The first thing that I talked about was the fact that when 

you have a when you have a perturbation, In the Initial data when you take repeated 

difference that perturbation gets amplified. So, that means that when you have an error In 



the Initial data that error becomes amplified but, here I am saying that when you have a 

certain function that you are evaluating at certain Intervals, at a certain fixed Interval If I 

take repeated differences those things become smaller, this differences become smaller 

does not say anything about the error the error the error might If there was an error here 

If there was an error In the calculation here, when I take repeated differences that Is also 

going to get amplified, that Is for sure that holds every time all I am saying here Is that 

this differences this magnitude of this differences are becoming smaller but, the error can 

become larger. 

If there was an error there that Is going to get magnified this Is the actual difference the 

actual difference Is becoming smaller but, the error If there was an error In my 

calculation of sin x somewhere then when I do this repeatedly that error Is going to 

become larger and larger that Is why when I say that this becomes this Is equivalent to 

the round of that means that Is actually reflected by that. So, If there was a round of error 

In the calculation of sin y have I take repeated differences that round of error Is going to 

get multiplied that Is a It Is going to become larger It Is going to get magnified but, now 

when I take the repeated differences the function value the difference value Is also 

becoming smaller the difference value Is also becoming smaller the actual. So that, so 

that round of error, If It Is Increasing It may be become actually larger than the true 

difference it become larger than the true difference Is that clear I hope I did not confuse 

you. 
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So, as the above example shows difference operations can be applied fruitfully to 

functions as well as sequence. So, E and delta relate a function f evaluated at a certain so 

It Is very similar, So, I do not want to elaborate this but, this Is very similar to how we 

operate on sequence so E f of x Is nothing but, f of x plus h x evaluated at the after a after 

a move one step forward, So, If I am If I have uniform grad If I have a uniform grad If E 

f of x Is f evaluated at x plus next at x.  

At the next point on the grad so f evaluated at the next point on the grad which Is x plus 

h similarly, delta f x f x Is equal to f evaluated at the next point on the grad minus f 

evaluated at x similarly, we can evaluate we can evaluate higher order differences, So, 

del 2 f x Is equal to del f x I operate on del f x I operate with on f x with the difference 

operator and then I operate again.  

So, operating on f x with a difference operator I get f x plus h minus f x and then I 

operate again with the difference operator, So, I have write first on f x plus h, So, I am 

going to get f x plus 2 h minus f x plus h minus del operating on f x will give me f x plus 

h minus f x, So that, Is what I am going to get; If I pull the terms together I get f x plus h 

minus 2 f x plus h minus f x similarly, del square f x minus h Is given by this same logic 

x minus h del f x minus h Is equal to f x minus f x minus h and operate on that with del 

again I get that value.  
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So, It Is Important to know that for functions unlike sequences, the values of the 

difference operator depends on the step size It depends on h remember for sequences, It 

only evaluated, It only depended on the function value on the various terms; In the 

sequence on the various depended on y n y n plus 1 y 0 y 1, now It depends not only It 

depends on the step size It depends on the step size. 

Next, we look at the following results which states that If f is a polynomial of degree n 

then Del k f for k lesser than or equal to m greater than or equal to 1. Is a polynomial of 

degree m minus k and delta m plus 1 f Is equal to 0, If you think of derivative this Is 

very, this should be very familiar to you, If I have a function which Is a polynomial of 

degree f and I take the derivative k times I take the derivative k times then the order Is 

reduced to m minus k think of a polynomial x to the power n. 

 If I take the derivative k times then I have the term will become x n minus k, So, the 

same thing holds for the difference operator what It Is saying that, If f Is a polynomial of 

degree m then I If I operate on that function k times with the difference operator then I 

am going to get a polynomial of degree m minus k similar to what I have would get If I 

operated with f k times with the different, differential operator Instead of the difference 

operator. 

And then If I operate n plus 1 times on f I am going to get 0 think of a polynomial of 

degree x to the power m If I take m plus 1 derivative of x to the power m I am going to 

get 0 similarly, exactly the same thing happens for the difference operator to show that 

well If we can show that for k equal to 1 by using Taylor’s theorem; So, delta f x Is equal 

to f x plus h minus f x by definition and then I expand f x plus h about x, In Taylor 

series. So, what do I get f x plus h f prime of x f x f x cancels and I have h f prime of x 

plus h square factorial 2 f double prime of x through h m factorial m f mth, mth 

derivative of f evaluated f at x which It Is clear, Is a polynomial of degree m minus 1 It Is 

a polynomial of degree m minus 1, where Is the leading order term Is given by this h f 

prime of x and that Is the first derivative of the polynomial of degree m. So, that is a 

polynomial of degree m minus 1. 

So, this term will be m minus 1 that term will be m minus 2 and so on and so forth so 

what does this tell me that if I and this Is actually equal to that, this Is exactly equal to 

my difference the result of my difference operation. So, this tells me that If I take the 



first difference of f x and If f is a polynomial of degree m then delta f x Is going to be a 

polynomial of degree m minus 1 and for higher orders of k we can prove It similarly, by 

Induction.  
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the main significance of difference operators Is connected to the fact that differentiation 

Is a limiting case of forming differences by applying difference operators. So, the 

difference operators as I make this step size as If I take, If I consider, difference 

operators operating on a function and I reduce my step size I reduce my h In the limit 

that h goes to 0 It can be shown that my difference and derivative operators become very 

similar So that, Is why they are useful that Is why these difference operators when we 

solve a differential equation numerically. We can use these difference operators to 

approximate my differentiation operations. 

So, as the step size approaches 0 the results of difference operations approach the results 

of differentiation the question Is how fast Is the rate of approach number 1; how fast 

does the difference operator approach the derivative as h goes to 0 number 1 and number 

2 how does the rate of approach change with the order of the difference order of the 

derivative Is the rate of approach the same for the first order difference operator and the 

first order different derivative and the second order difference operator and the second 

order derivative, the third order difference operator and the third order derivative before 



we look at this we first consider the following analogous operations, which are very 

similar to for.  

When you first look at derivatives you look at things like derivative of a product and 

things like that derivative of an exponential or derivative of something raise to the power 

of something. So, you looked at those derivatives first when we looked at derivatives like 

In high school or somewhere now I want to look at very similar operations using the 

difference operators I want to apply the difference operator on a product, I want to apply 

difference operator and exponent and see the result look at the result and compare to 

what I would get, If I apply the derivative on those same things, So, If I apply the 

difference operator on a product how does the result compare to the derivative of the 

same of that same product let us look at that.  
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So, If I apply If I look at the difference of a product, So, I have a product u, n, v, n I have 

a product u n v n and I am operating on that with a difference operator. So, by definition 

this Is going to be u n this thing evaluated at n plus 1 minus this thing evaluated at n, So, 

that Is going to be u n plus 1 v n plus 1 minus u n v n. 

So, I can write this as u n v n plus 1 minus v n plus u n plus 1 minus u n v n plus 1 you 

can see that the only terms that are going to survive are going to be u n plus 1, v n plus 1 

and u n v n this term u n v n plus 1 and u n and u n v n plus 1 they are going to cancel out 

because, they are going to negate each other. So, I can write It like that so let us compare 



this result with the formula for the derivative of a product u v derivative of a product u v 

d u v Is equal to u d v plus v d u. 

 Now, look at this If we think of this as del v as del v, So, I have u del v plus, If I think of 

this as del u del operating on u n del u n and this has del v n, So, I get del u n v n plus 1 

which Is very different we have d u v Is equal to u d v, So, this term Is similar then you 

have u n plus 1 u n you can think of that Is d u analogous to d u that then here It should 

have been v n but, It Is actually v n plus 1. So that, Is that is the difference. 

So, In the difference operator formula the second term contains v n plus one rather than v 

n which Is different from the differential formula this tells us that this operation Is not 

exactly equal to the derivative this difference operation Is not exactly equal to the 

derivative It will become close to the derivative when my n plus one Is very close to n 

when my v n plus 1 is very close to v n when my step size is small but, It is not exactly 

equal to the derivative, So that, is the point I want to emphasis friends next let next look 

at let us look at the difference of an exponent.  

So, del c a to the power x, If I evaluate that So, by definition that Is equal to the function 

evaluated at x plus h minus the function evaluated at x So, that is equal to c a x to the 

power x plus h minus c a to the power x, I pull out c a x I get a to the power h minus 1 I 

can write this as c a h minus 1 Into a to the power x, by Induction If I operate on this k 

times with the difference operator I can show that this becomes c a h minus 1 to the 

power k times a x. Now, see what you would get, If I used exact differentiation d a to the 

power x would have given me a x l n a which Is very different from the difference 

formula, which we calculated here which is very different from you can see that 

difference operators and differential operators are not really Identical, even for very 

simple operations most elementary derivatives here also the difference operator Is giving 

something which Is not really the same as the as the differential operator. 
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Next we consider the result obtained when a difference operator is applied to the 

members of a sequence w 0 w 1 w 2 through w n and there should be, there it is, it means 

w 3 w 4 w n sorry I missed the ellipsis and the result is sum, So, If I operate or with a 

difference operate on this sequence. If I operate on the first term I am going to get delta 

w 0 which is going to give me w 1 minus w 0 plus and then I am adding the result and 

the result is sum then I operate with a difference operator on w 1, I get w 2 minus w 1 

operate with a difference operate on w 2 I get w 3 minus w 2 and so on and so forth w n 

minus w n minus 1 I get this and you can see that If I add them together I am left with w 

n minus w 0 but, the left hand side is nothing but, sigma n Is equal to 0 n minus 1 del w n 

why because, this del w 0 which is this term plus del w 1 which is that term and then del 

w n minus 1 which Is this term which Is this actually should be small n this should be 

small n which Is that term. 

So, the left hand side s actually this and the hand side Is w n minus w 0. Now, we assume 

that w n is actually given by the product of 2 terms u n v n so each term in the sequence 

w 0 is given by the product of u n v. So, w 0 is equal to u v w 1 equal to u 1 v 1 v 1 and 

so on and so forth. So, w n so let us assume that w n Is equal to u n v n then what do I get 

the left hand side become sigma n equal to n minus 1 delta u n v n and that must be that 

by definition that by no so that Is equal to w n w n Is equal to u n v n minus w that Is 

equal to u v but, by definition delta u n v n Is equal to not by definition but, just from my 

previous result which used the definition.  



Let us look at the previous result. That is this delta u n v n is equal to u n delta v n plus 

delta u n v n plus 1. So, that Is that u n delta v n plus delta u n v n plus 1 So, we can write 

n equal to sum n equal to n minus 1 delta u n v n Is equal to sigma so I am just taking the 

summation and then I am replacing this by that u n delta v n plus sigma n equal to n 

minus 1 delta u n v n plus 1 and I know that this is must be equal to this u n v n minus u, 

v. Now, I am going to collect terms from the above we get sigma u n delta v n this term 

is equal to u n v n minus u v and then I bring this term to the minus sigma n equal to n 

minus 1 delta u n v n plus 1.  
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So, I just brought 1 term to the and I get this thing, So, sigma n equal to u n delta v n is 

equal to u n v n minus u v minus sigma n equal to n minus 1 delta u n v n plus 1 compare 

this with the Integration by parts. So, as I Integrate u d v within the limits a b then the 

Integration by parts rule tells me that this is u v evaluated at v n a difference between b 

and a minus Integral a to b d u v look at this is very similar, So, this is u d v If you think 

of delta as d, So, u n delta v n u d v is equal to u n v n, So, I have the evaluated at the 

other end of the Integral minus u v evaluated at the first at the first point In the Interval 

minus Integral of a to b g u v del u n v n plus 1. 

Very similar except for that difference that is v n plus 1 and here I have v, So, If It had to 

be exactly analogous this should have been v n, this should have been v n but, It Is 

similar, So, next we Introduce a result which formally establishes the relationship 



between the difference and the differential operator and the derivative operator, so what 

is that result. That result say tells me that if I operate on the function f of x k times with 

the difference operator then I get h to the power k h being the size of my step size times 

the function f the kth derivative of the function f but, that kth derivative is not evaluated 

at x It Is evaluated at xi which Is very Important. 

 It tells me that If I operate on the function f k times I am going to get something very 

similar to that kth derivative of f I am going to get something very similar to the kth 

derivative of f but, the kth derivative of f not evaluated at x the point at which I am 

taking the difference but, at some other point xi and how what Is the range of xi what Is 

xi where xi can be can be any point which belongs to the Interval x to x plus k h xi can 

be any point which belongs to the Interval x plus k h. Of course, this assumes that the kth 

derivative exists. So, that the function is k derivatives up to order continuous derivatives 

up to order k. 

So, this Is very Important It tells me that well, If you take k differences you are going to 

get something like the kth derivative but, not at the same point It is evaluated at a point 

which is shifted which may be shifted from the original point and the extend of the shift 

is of course, going to depend on the your step size, It is going to depend first on the step 

size and also In the order of the derivative the higher the order.  

If I take the same step size and I look at higher and higher differences so the shift the 

range of the shift becomes larger because, It Is getting multiplied by k so for the first 

derivative the point the exact that the derivative Is will be evaluated at will belong to any 

Interval between x and x plus h, for the second derivative It is can belong to any Interval 

between x and x plus 2 h. So, as you take more and more derivatives the range becomes 

larger. 

But, If you reduce the step size again the range becomes smaller, So, as you Increase the 

derivative the range becomes larger as you reduce the step size the range becomes 

smaller, So, for k equal to 1 this means that delta f x is equal to h of f prime of xi. Let us 

go back and take a look so delta f x delta f x is equal to h times f prime where the first 

derivative of f evaluated xi. So, It is not equal to h f x that is very Important.  
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But, recall the delta f x Is equal to f of x plus h minus f of x therefore, we have f of x plus 

h minus f of x is equal to h times f prime of xi and I know that xi must belong to the 

Interval x to x plus h which Is nothing but, my mean value theorem which Is nothing but, 

my mean value theorem. So, to prove the result for k equal to q k equal to 2 we use 

Taylor’s formula to expand f of a plus h and f of a minus h and we will define a In terms 

of x later on but, for the time being let us look at f of a plus h and f of a minus h If I use 

Taylor’s formula on f of a plus h I get f evaluated at a plus h f prime a plus this term this 

remained term whether xi 1 belongs to the Interval a and a plus h because, I am 

evaluating It about xi 1 belongs to the Interval a to a plus h and let us look at f of a minus 

h It Is equal to this term plus, this term and xi 2 must belong to the Interval a minus h to 

k a minus h to a. 

So, we have xi 1 belonging to a and a plus h and xi 2 belonging to a minus h n a. Now, if 

I define a Is equal to x plus h then I get xi one Is lesser than or equal to a which Is equal 

to x plus h lesser than or equal to a plus h which Is equal to x plus two h similarly, xi 2 Is 

greater than a minus h a minus h Is nothing but, x and xi 2 is less than a which is equal to 

x plus h. So, this tells me that xi one must lie In this range xi two lies In this range If I 

combine these 2 bounds what do I get for xi 1 as well as xi 2 so if I so this makes a 

statement about xi 1 about the bounds In xi 1 this makes a statement about the bounds In 

xi 2 If I want to make a combined statement on bound; So, I want to calculate bounds on 



both xi 1 and xi 2, So, I take the lowest value which Is x and the highest value which Is x 

plus 2 h, So, both xi 1 and xi 2 must lie between x and x plus 2 h. 
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So, then that what do we do? We add these two. So, I add these two I add these 2 so I get 

f a plus h plus f a minus h then I get f a plus f a that gives me 2 f a this term cancels out. 

So, I have f a plus h plus f a minus h minus 2 f as if I bring that to the left hand side. That 

is this and that is equal to half h square f double prime xi 1 plus f double xi 2. So, that is 

equal to this plus this half h square f double prime xi 1 plus half h square f double prime 

xi 2.  

So, I have that term. Now, since f double prime xi is continuous f double prime is a 

continuous function. So, the mean of f double prime xi 1 and f double prime xi 2 must be 

equal to the value of f double prime evaluated at some point between xi 1 and xi 2; so f 

double prime evaluated at some point between xi 1and xi 2 and therefore, xi must belong 

to the Interval. This as we know that both xi 1 and xi 2 belongs to this interval so the xi 

So, If the function xi which Is equal to the mean of these 2 the function I mean f double 

prime xi is the mean of this function that xi must lie also In this interval is that clear that 

xi must also lie In that Interval. 

So, and this Interval again I am expressing In terms of a and h taking keeping in mind 

that x is equal to a plus h, a is equal to x plus h. So that, gives me a minus h a plus h so xi 

must belong to a minus h and a plus h recall also that f a plus h minus twice f a plus f a 



minus h is equal to del square f a minus h. We saw that before and where we saw it that 

we saw it sometime here, Del square f x minus h is equal to f x plus h minus.  

So, f a plus h this Is equal to del square f a minus h and a minus h Is equal to x, So, that 

Is equal to del square f x, So, what do I get finally, I get del square f x Is equal to h 

square times f double prime of xi where f double prime of xi is the mean of f double 

prime xi 1 and f double prime xi 2 and I know that xi belongs to the Interval x to x plus 2 

h So, again we are getting a proof for k equal to 2. Recall our original general 

expression.  

Del k f x Is equal to h k f k xi, So, for k equal to 2 also we have shown that this Is true. 

So, Del square f x is equal to x square f double prime xi where xi again belongs to the 

Interval x to x plus 2 h remember the Interval, we said was x 2 x plus k h. Now it is 

exactly x plus 2 h because, we are looking at the second difference. Similar proofs can be 

obtained for k greater than 2, so k this is the relation between the difference operator and 

the differential operator. So, It is equal to the difference of the result of the difference 

operation but, evaluated at a point which Is not exactly at the same point.  
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So, from the general result Del k f x is equal to h k f k xi. Xi belongs to x to x plus k h 

we have that h k h to the power minus k times Del k f x is an approximation to f k of x 

why is It an approximation; because, it is not evaluated at x. It is evaluated at xi that is if 

it is not exact because, of this. So, It is just an approximation to f k x and the 



approximation will be as good as the Interval as the Interval becomes smaller the 

approximation is going to become better and better, So, If x is very close to x plus k h. 

Well, your derivative and differential operator are going to be close, If not they are going 

to be wrong or there will be errors and the error you can see is approximately 

proportional to the step size because, the error is like k h. So, it is proportional to the step 

size, So, It Is linear In h it is linear In h. 

One more thing In the computation of delta k f of x, we use the values of f at x plus h x 

plus 2 h up to x plus k h and you will note that these values this x plus h x plus 2 h x plus 

k h lie symmetrically about x plus half k h, So, all the, all the function values that I am 

evaluating at these different points they are symmetrical about x plus half k h, the points 

at which I am evaluating the function are symmetrical about x plus half k h; Now, it can 

be shown that h to the power minus k times delta k f x is actually a much better 

approximation to f to the derivative to kth derivative evaluated at x plus k h plus 2 that is 

at the midpoint of my Interval in the midpoint of my Interval rather than at 1 end of the 

Interval at x, So, this operation this operation which I got after operating on f k times 

with the difference operator and If I divide that by the step size raise to the power k. 

 I know that is an approximation to the derivative evaluated at x and the error we know 

depends on this step size but, actually It is much closer that it is less of an approximation 

If I evaluate the If I look at the point x plus k h by 2, It Is less of an approximation If I 

look at the point x plus k h by 2 rather than looking at the point x. 

So, I have the center of the Interval, If at the center of the Interval the difference the kth 

difference is much closer to the derivative than at the end of the Interval the derivative 

being evaluated at the center point, derivative being evaluated at the end. So, again let 

me repeat so If I look at the kth difference and I look at the derivative evaluated at the 

end of the Interval and I look at the derivative evaluated at the midpoint of the Interval 

the kth difference is much closer to the exact derivative of the function evaluated at the 

midpoint of the Interval rather than at 1 end of the Interval.  

So, that is because, It turns out that the error in this case Instead of being linear with the 

step size is actually quadratic with the step size If I am evaluating it at the midpoint. So, 

the midpoint gives the difference is much closer to the derivative at the midpoint than at 

1 end of the Interval. 
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So, we let us look at little example and show what whether this is true. So, In the 

example, we look at is the exponential function f of x is equal to E to the power x and 

suppose, we are going to evaluate differences with the step size of h Is equal to point 1 

then if I look at delta f, delta f is going to be f evaluated at plus h minus f evaluated at 

and h Is point 1. So, f evaluated at point 1 minus f evaluated at divided by my step size h 

which is point 1; So, that is going to be E to the power point 1 minus E to the power 

divided by point 1 which is going to be 1 point, 5, 7,1. How, closes then we want to look 

at how close this value is to the derivative of f evaluated at well, the derivative of f 

evaluated at is 1 derivative of E to power x is x. 

 So, the derivative of f evaluated at is 1, So, it is quite different I mean, It is not quite its 

5 percent all; So, It is 1 point 5, 1, 7, 1 and here It is 1 but, Instead of evaluating It at if I 

evaluate the derivative at this should point 5, that is at h by 2 my step size is h; So, 

evaluated at midpoint of the step size midpoint of the step size, So, remember for the 

linear for the first derivative the Interval size is x plus x 2 x plus h, So, I am evaluating it 

at the midpoint of the Interval my first point is my end point is point 1 I am evaluating it 

at half, that half, that at the midpoint of that Interval, So, I want evaluate It at point 5. 

So, If I evaluate E to the power point 5, If I evaluate the derivative of E to the power x 

which is the same as E to the power x, if I have if I evaluated It at point 5, I get 1 point 1 

5, 1, 2, 7 which is actually much closer to the difference than the derivative at x is equal 



to thus. It is clear that h minus h the power minus 1 delta f Is a much better 

approximation to the actual derivative at x is equal to point 5 than at x is equal to it is 

much better approximation the midpoint of the Interval rather than at the end point. 

This holds true for we just showed it for the first difference on the first derivative It holds 

true for higher order, differences and higher order derivatives as well. Let us take a step 

back now and the difference operator that we have talked about the delta operator that we 

have talked about is actually 1 particular difference operator, there are many other 

difference operators this delta operator. This delta difference operator is known as the 

forward difference operator. Why is it called the forward difference operator because, 

delta operating on f at x is equal to f x plus h minus f of x. So, I have to look forward by 

1 step h and then I take the difference at f of x to calculate that difference operator but, 

there are other difference operators as well, for Instance we have things like the 

backward difference operator, the central difference operator the average difference 

operator and things like and all turns out that all these operators are related to each other 

so let us take a quick look.  
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So, other difference operators include the central difference operator the average 

difference operator the backward difference this for Instance it we are going to denote by 

delta. The central the y the central difference operator, So, that is f x plus half h, So, delta 

operating on f of x is equal to f x plus half h minus f x minus half h then there is a 



average difference operator mu which operating on f of x yields half f of x plus h plus 

half f of x minus h, So. at x I look at I take half a step forward I take half a step back 

evaluate the functions at those locations, I take the average of that and I said that is the 

result of my average difference operator. 

The backward difference operator on the other hand is f x minus f of x minus h so which 

I denoted by this nabla sign f of x is equal to f of x minus h. So, I am looking back now 

Instead of looking forward I am looking at x minus h Instead of looking at x plus h I am 

looking at x minus h and even by just cursory examination you can see that these 

difference operators are related to each other for Instance the forward difference operator 

operating on f evaluated at x minus h, is equal to the backward difference operator 

operating on x. And similarly, you can relate the central difference operator to the similar 

relationships exist between higher order difference operators as well, So, we will 

continue with our discussion on difference operators in the next lecture.  

Thank you. 


