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Orthogonal Polynomials 
 

In lecture 32 of our series on numerical methods in civil engineering, we will talk about 
orthogonal polynomials.  
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Before we do that let me recapitulate what we talked about at in our last class and 

particularly what we talked about at end of the last class, when we were talking about the 

relative merits of polynomial versus linear interpolation. We looked at polynomial 

interpolation and we suggested that an alternative instead, if we have a great m plus 1 

point instead of trying to fit an m-th order polynomial through this points, an alternative 

approach might be used might be to use linear interpolation. Suppose we know the 

function values at x 0 through x m, and we are interested in evaluating the function at 

any point x, where x lies between any 2 grid points x k minus 1 and x k.  

Then, instead of going through the expensive fitting and m-th order polynomial through 

the points x 0 through x m a simply solution may be to calculate f of x by linearly 

interpolating between f of x k and f of x k minus 1, which are basically the function 

values evaluated at x k and x k minus 1. We can always do that, but we have to find out 



there are two things, we have to consider; first is how accurate is our linear interpolation 

number one that should be the main one of the main considerations, the other main the 

other consideration should be how expensive, how computationally expensive or how 

computationally inexpensive, it is compare to using a polynomial interpolation. 

So, when first we want to consider (( )) accuracy when is linear interpolation sufficiently 

accurate. Suppose we have a table of equidistant correctly rounded function values 

meaning that we have rounded the rounded them correctly. So, that we know that they 

are accurate up to t decimal places. So, that we know that those function values are 

accurate up to t decimal places.  
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Last time I talked about a particular result which states that if given a table of equidistant 

correctly rounded function values, if we are assured that the second difference calculated 

from the function values satisfies this condition that is the second difference is very 

small and it is as small as 4 into 10 to the power minus t , where t is denotes the last digit 

in the function value then the total error in linear interpolation can only exceed slightly 

exceed 10 to the power minus t in magnitude, but when is this condition going to be 

satisfied, When is the second difference going to be so small that it is lesser than or equal 

to 4 into 10 to the power minus t, when my function values are varying relatively slowly, 

when my curve when the difference between the function values is not large only in that 

case when I take the second difference the second difference is going to be really small.  



So, the assumption in built assumption here is that the function values are not varying 

very much. In that interval only then is my linear interpolation going to give me accurate 

results, accurate up to this level. The linear total error in linear interpolation can only 

slightly exceed 10 to the power minus t. In magnitude and what do we mean by the total 

interpolation error which I also talked about last time. 

The total interpolation error has basically got 3 components it is the round off error due 

to uncertainty in the known function values, there is some round off there then there is a 

truncation error basically, we are using an interpolate of a certain order a polynomial of a 

certain order inbuilt in to that is the assumption, that there is an error term is a reminder 

term, which contributes to the error, so that is the truncation error and finally, there is a 

round off error made during the computations during the actual calculations you do, to 

find out your interpolated value. So, the above bound on the error due to linear 

interpolation assumes that while R t and R x are non zero. R c is sufficiently small to be 

ignored. So, we are just considering R x and R t when we talk about this bound. 
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However, for this condition to be satisfied the points x 0 x 1 through x n must be 

sufficiently closely spaced I initially told you that the function should not, function value 

should not vary, that much in that interval that is equivalent to say that my interval is 

very small. That my points are closely spaced, so given a fixed interval, this requires the 

knowledge of function values in a narrowly spaced grid.  



Thus, for a linear interpolation to give accurate results many more table values are 

needed because our grid has, we have to a very narrowly spaced function narrowly 

spaced grid function values at many points. That the function is varying slowly and that 

means if I have a large interval that means, I have many function values that need to be 

evaluated, So. I have many my grid has many points. 

As an example suppose I interpolate has to be found for the function log, natural log of x 

over the interval x greater than equal to 1 less than equal to 5. So, we know this function 

value, we know this function and we know and we can calculate the function values at 

points in a grid and then we try to fit a polynomial to this function values. It turns out if 

we try to do it with linear interpolation. We try to fit lines between the function values 

and then try to interpolate the value, at an unknown point from my Interpolate. In that 

case if I use a linear interpolation I will need 450 function values, while if I just use a 

quadratic interpolation. I need 100 function values in order to get the same level of 

accuracy. 
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So, are we have talked about Newton’s interpolation formula basically that is let us recall 

Newton interpolation formula is a way to figure out the polynomials to calculate the 

coefficients of the polynomials, of the polynomial which we are using to interpolate 

instead there is 1 route force way to which I told you t in the beginning.  



Where you actually go ahead and invert the matrix to find the coefficients of the 

polynomials but instead of that we talked about the linear Newton’s interpolation 

formula which allows you to calculate the coefficients of your polynomial, of your 

interpolate relatively easily. There are other interpolation formulas. For instance, the 

lagrange interpolate formula which is particularly popular in the context of finite element 

methods in addition to Newton’s interpolation. We are going to talk about that and the 

lagrange interpolation formula goes like this, It says that my interpolation formula, Is 

given by this sort of a function f, f i are the known function values known function 

values at the grid points and delta i x is basically interpolate. 

Lagrangian polynomials are widely used in the finite element method to construct shape 

functions at the notes of the finite element mesh delta i is the polynomial of degree m 

and satisfies the relation delta i x j is equal to1. So, delta i for delta each of these 

polynomials, are associated with the grid point and that polynomial assumes the value 1 

at the grid point and is 0 everywhere else and my total interpolate is obtained by 

summing those polynomials, scaling each polynomial by the function value at its grid 

point, at the grid point at which the polynomial is1 scaling that polynomial with that 

function value and summing it together. So, delta i x j is equal to1, If j is equal to i and is 

equal to 0 everywhere else, at all every phenomena when I say everywhere else, I mean 

at all the other grid points.  
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Hence, delta i x must have this following form in order to satisfy that condition delta i x 

must have the following form. x minus x j is pi denotes the product x minus x j divided 

by x i minus x j and the top for delta i x we have everything, if we look at the second 

term in each of this first brackets there is x 0 x 1 x i minus 1 but there is a missing x i the 

bottom I have x i minus x 0 x i minus x 1 through x i x i plus 1. 

Actually, it should need not stop at x i plus 1 it can go up to m; it can go up to m I have 

missed; I have not included the higher terms. So, this gives me something like that. So, 

given this form of delta i x by definition if I define Q x like this if I define Q x like this. 

Q x j will be equal to f of j. So, that is your Lagrange interpolation formula again is the 

same thing I know the function values at certain grid points. 

So, question of fitting a polynomial to those function values. Another commonly used 

interpolation formula which is also a solution of the general interpolation problem is 

hermit interpolation. The advantage of hermit interpolation is that we can using hermit 

interpolation. We can interpolate not only the function values but also the derivatives of 

the function values. We can you can interpolate the derivatives of the function values this 

involves using Newton’s interpolation formula to fit not only the function values but also 

1 or more known derivatives of the interpolation points. So, if we know not only the 

function values at the interpolation points but we also know the derivatives, then we can 

use hermit interpolation and as we will see hermit interpolation is really a special case of 

Newton’s interpolation. 
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Thus, one can generate a polynomial fit to the derivatives of a function rather than to the 

function itself, from Newton’s interpolation formula. We recall the coefficients are 

defined in terms of the divided difference operator, when through a lot of pain to show 

that for Newton’s interpolation you can find the coefficients by evaluating this divided 

difference operator and we showed how to evaluate those divided, difference operators 

and in particular if you want to evaluate c 1. The coefficient of the term liner n x then 

that can be obtained like this f of x 0 x 1 which is basically, the first order divided 

difference operator which is given by f of x 1 minus f of x 0 x 1 minus x 0. 

Now, take the limit of this, if we take the limit of this as x 1 tends to x 0 what do we get 

here, we get f of x 1 minus f of x 0 divided by x 1 minus x 0 the limit x 1 tends to x 0 

that is equal to the derivative of the function at x 0. So, what does that tell me, that tells 

me in the limit that x 1 becomes, very close to x 0. In that case my first coefficient I can 

get that by equating that to the derivative, to known derivative value at x 0. 
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Similarly, I can do that with higher order derivatives as well. So, higher order derivative 

if I know higher order derivative values at interpolation points I can also use them to 

define the coefficients, how do we do that? Well, let us recall that c k is equal to this for 

k less than or equal to m we also recall that we showed this f of x 0 x 1 x k minus 1 x is 

equal the k-th derivative of f evaluated at xi evaluated by factorial k where xi belongs to 

the interval span interval, which includes basically x i belongs to the smallest interval 

which includes the points x 0 x 1 x k and x. 

So, we consider this equation and we set the limit x 1 tends to x 0 x all the grid points the 

grid become smaller and smaller. So, I interest in taking the derivative. So, these things x 

one tends to x 0 x 2 tends to x 0 through x k minus 1 x 0. We get c k is equal to the k-th 

derivative of f evaluated at x 0 divided by factorial k. So, I can get the c k-th term in my 

polynomial expansion using hermit interpolation by this value right. 

So, why does i becomes exit because everything basically collapses to x 0.So, my 

interval becomes, smaller and smaller and so i get f of k x 0. So, that is how we can use 

hermit interpolation to fit a polynomial. Not only the function values but also the 

derivatives this where those of you, who are the structural mechanics background this is 

used if our Bernoulli Euler beam’s for Bernoulli Euler beam’s. 

When we want to interpolate the slopes when the particularly a finite element context 

when we are using, when we are trying to solve a Bernoulli Euler beam, we need to 



interpolate not only the displacements at the grid points and a known, we also need to 

interpolate the slopes at the grid points. So, in that case we need to fit that interpolate to 

not only the function the displacements that is the function values, at the grid points but 

also the derivatives of the function values at the grid points which are my slopes. 
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Orthogonal polynomials: Another important class of polynomials that are often used 

interpolation and possess many desirable properties are orthogonal polynomials and 

Chebyshev polynomials, The Chebyshev, spelling you can find a different spelling in 

different books, Some book spell with that Chebyshev, I am used the spelling Chebyshev 

but they are probably the most important examples of a triangle family of orthogonal 

polynomials. Now, these Chebyshev polynomials are just a particular instants or 

something which is much broader and much more general, that is the family or general 

theory of orthogonal polynomials.  

There are particular types of orthogonal polynomials. We will talk about the general 

theory not in great detail but at least the basic features of the general theory. Some point 

later on in this lecture but first I want to motivate the lecture by talking about 1 particular 

type of orthogonal polynomials. These Chebyshev polynomials they are these are very 

important because they possess some very desirable properties as we will see later on 

how we construct Chebyshev polynomials. Well, Chebyshev polynomials are 

constructed taking using the cosine function and taking the advantage of the fact that I 



can write cos of n phi for any n greater than 1 has a polynomial in cos of phi I can write 

cos of n phi as a polynomial in cos of phi.  
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It is an example, well how can we do? Why can we do this? Well, it is just because of 

this particular formula. I can always write cos of n plus1 phi plus cos of n minus 1 phi 

has cosine of phi and times cos of n phi. So, for n is equal to 1 I can write using this 

formula here I can write n is equal to 1 cosine of 2 phi is equal to 2 cos square phi minus 

1 this part becomes 1 1 minus 1, 0. So, to the left I got cos of 2 phi is equal to 2 cos 

square phi minus 1 for n is equal to 2 I have cos of 3 phi plus cos of 2 phi is equal to 2 

cos of phi times cos of 2 phi So, I know cos of 2 phi in terms of cos of phi. So, I have cos 

of 2 phi here I know it terms of cos of phi So, I can write cos of 3 phi entirely in terms of 

cos of phi. 

So, cos of 3 phi is equal to 2 cos of phi times cos of 2 phi minus cos of 2 phi. I know cos 

of 2 phi in terms of cos of phi. So, I can write cos of phi cos of 3 phi entirely in terms of 

cos of phi. Similarly, I can write cos of 4 phi entirely in terms of cos of phi and similarly, 

for a higher order terms as well any n any integer n cos of n phi I can always represent 

that in terms of cosine phi and then I set x is equal to cosine of phi or phi is equal to 

cosine inverse of x to get the Chebyshev polynomials. In the interval x it must be less 

than or equal to minus 1 greater than or equal to minus 1 less than or equal to 1 why does 



x has to have to satisfy this bound. Well, because I am setting x is equal to cosine of phi 

and n can be equal to 0 can be any (( )) which has talked about. 

So, then we define the Chebyshev polynomial of order n with argument x as cosine of n 

phi which is equal to cosine of n times cos inverse of x. Thus T 0 of x is nothing but 

cosine of 0 which must be equal to 1 T 1 of x is equal to cos of n times cosine inverse of 

x which is equal to x T 2 of x is equal to T 2 of x is going to be 2 cos square phi minus 1 

which is equal to 2 x square minus 1 2 x square minus 1, T 3 of x is equal to 4 cos cube 

phi minus 3 cos phi. So, that is equal to 4 x cube minus x. So, these are my Chebyshev 

polynomials, So, I am can generate the nth Chebyshev polynomial keeping in mind. That 

x is equal to cosine phi x is equal to cosine of phi is that clear.  

So, T 3 of x is cosine of 3 times phi cosine of 3 times phi which is cos of 3 phi which is 

equal to 8 cos of 4 phi minus 8 cos square phi plus 1 which is equal to 8 x to the power 4 

minus 8 x square plus 1. So, that is how I can generate my Chebyshev polynomials. The 

Chebyshev polynomials have many useful properties that are common to orthogonal 

polynomials, For instance, they can be generated recursively later on. I will go to talk 

about the recursive formula the general recursive formula for orthogonal polynomials. 

What does the general recursive formula do, well it tells you that if you know the first 

few terms of that series of orthogonal polynomials you can generate higher order terms 

using that recursive formula. So, similar, so like for instance for the Chebyshev 

polynomials. We know that T 0 x is equal to T 1 x is equal to x times T 0 x because x T 0 

x is 1. So, x times T 0 x and any higher order term in higher order Chebyshev 

polynomial, we can generate by multiplying the next term the next dual order term by 2 x 

and subtracting the previous one 2 x times T n x minus T n minus 1 x is going to give me 

T n plus 1 x you can try it out here. 

So, if I want to evaluate T 3 x instead of doing this, instead, of doing this substitution 

here instead of writing out the expression for cos of cos of 3 phi I can use this recursive 

relationship. So, I am going to take 2 x times T 2 x minus T 1 x that is going to give me 

T 3 x. So, that is so that can so the higher order terms higher order Chebyshev 

polynomials can be generated relatively easily, without having to evaluate this the higher 

order the cosine terms, cosine terms for higher integer high integer values n. So, as can 

be seen from this.  
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As we can see from here, the leading coefficient of each Chebyshev polynomial is 2 to 

the power n minus 1. So, let us take a look. So, for the 3 Chebyshev polynomial, the 

leading order term is x cube and what is the coefficient of x cube is 2 to the power 3 

minus 1, 2 to the power 3 minus 2 to the power 2, 4 for t 2 x what is the leading order 

term x square. What is the coefficient of that it is 2 to the power 2 minus 1 to the 1 that is 

2. So, the leading order term in each Chebyshev polynomial has coefficient 2 to the 

power n minus 1. 

Chebyshev polynomials also satisfy the symmetry properties. So, what is the symmetry 

property? It says that T n of minus x is equal to minus 1 to the power n T n of x .They 

satisfy the symmetry property and each Chebyshev polynomial of order n has n 0. In the 

interval minus 1 to 1 and the 0 are given by the following we know T n of x k is equal to 

cosine of n phi to the power k and this has to be equal to 0. Where the Chebyshev 

polynomial is 0 this has got to be equal to 0.  

So, when is this equal to 0 this is equal to 0 when n phi k is a multiple of pi by 2 is an 

odd multiple of pi by 2. So, n phi k must be equal to 2 k plus 1 times pi by 2 for cos of n 

phi k to be equal to 0. That is for the Chebyshev polynomial to have a 0. So, that gives 

me phi k the value of phi k. So, these are the values of phi k for which the Chebyshev 

polynomial is 0. So, I know phi k is equal to this so that means x k which is cos of phi k 

is given by this. 



So, these are the points, these are the grid points where my Chebyshev polynomial is 

going to be 0. So, these are the 0 of the Chebyshev polynomial it turns out that 

Chebyshev polynomial also have n 0 T n. The Chebyshev polynomial of order n has n 0 

in the interval minus 1 to1. It also has n plus 1 extreme in minus 1 to 1 extreme meaning 

minimum or maximum.  
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This is because the Chebyshev polynomial T n x k is equal to cosine of n phi k and I 

know that mod of cosine of n phi k between minus 1 and 1 and it is equal to minus 1 

since it is minus 1 at pi it is equal to 1 at 2 pi it is one at two pi. 

So, it has got maxima at n phi k at where n phi k is equal to k phi k equal to 0, 1,2 

through n hence, the maxima occurred at phi k is equal to k pi by n. So, again we can get 

the location of the maxima in terms of x using the relation that x k is equal to cos of n phi 

k. So, the maxima, so the extrema not the maxima the extrema of the Chebyshev 

polynomial occur at cos of k pi by n. 

So, we have talked about the, 0 of the Chebyshev polynomial. We have talked about the 

extrema of the Chebyshev polynomial, we shall see that these are the location of these of 

the 0 location of this extrema are extremely important. They are very valuable the 

Chebyshev polynomials. 



 I said are orthogonal polynomials but they are orthogonal with respect to a certain 

weighting function. So, if I integrate if I integrate 2 Chebyshev polynomials of different 

orders and multiply them with this weighting function, 1 minus x square to the power 

minus half and integrate them within the limit minus 1 and 1 I am going to get 0 always 

So, long as i is not equal to j so they are orthogonal but with respect to a certain 

weighting function. 

If I just take integral within minus 1 to 1 of T i x T j x then I am not going to get 

orthogonality they are orthogonal, only with respect to this weighting function. But, if i 

is equal to j then they are then this integral is equal to pi if both are equal to 0 and if both 

are not equal to 0 but both are equal then I get pi by 2.  
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Well, you can prove that which yields relatively trivial. So, I just spend a few minutes. 

So, let x is equal to cos phi then I am interested in evaluating T i x T j x 1 minus x square 

to the power minus half then I get recalling. That I can write the Chebyshev polynomial 

in terms of cos phi So, I get integral between 0 to pi cos of i phi cos of j phi d phi this 

term actually disappears because 1 minus x square 1 minus cos square phi half gives me 

sin phi sin phi d x gives me d phi. 

So, that term disappears. So, I have integral of this that if I evaluate that if I write it out 

so this is equal to cos of i plus j phi plus cos of i minus, i minus j phi. We integrate this 

between 0 to pi I will find, I get that previous result. So, that is for the Chebyshev 



polynomial in the continuous case. Where I am trying to integrate, it over the interval 

minus 1 to 1 so it is assumption is that the function is continuous in that interval but 

suppose I do not know the function values at all the points in that interval minus 1 to 1 I 

only know it at certain grid points then I can evaluate this, I can impose this 

orthogonality condition. At the grid points the orthogonality condition is satisfied at the 

grid points. 

So, if we consider the discrete case that is we evaluate the Chebyshev polynomials at 

discrete points. Then the orthogonality property is satisfied in the following manner I 

think I have made a mistake here, because I have omitted the weighting function. So, 

sigma k equal to 0 to m T i x k T j x k times the weighting function evaluated that point 

is equal to 0 if i is not equal to j is equal to half m plus 1.  
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If i is equal to j is not equal to 0 is equal to m plus 1. If i is equal to j is equal to 0. Where 

the x k’s we note where, the x k’s are the m plus 1 0 of the Chebyshev polynomial of 

order m plus 1. Let us go back and take a look.  

The sum is from k is equal to 0 to m and I am evaluating the Chebyshev. I am taking the 

product of the Chebyshev polynomials of order i and j but I am evaluating each of them 

when I am imposing the orthogonal, the orthogonality constraint is satisfied at x k where 

x k are the 0s of the other m are the 0 of the m-th order Chebyshev polynomial. It is they 

are the 0 of the m-th order Chebyshev polynomial. Is that clear? Rather than m plus 1-th 



order Chebyshev polynomial. Is that clear? So, the m plus 1th order Chebyshev 

polynomial is going to have m plus 1, 0 there are actually m plus 1 0.  

If you go back and take a look from k is equal to 0, to m so it is not m it is actually there 

m plus one zeros so we need the zeros of the m plus 1’th order Chebyshev polynomial. 

The m-th order Chebyshev polynomial is only going to have m 0. 

Another very important property of Chebyshev polynomials this is what this is the 

probably the most important property of Chebyshev polynomials and why it is so 

valuable is among all the polynomials of order n where n stretches. From 0 to infinity 

which have leading coefficient 1. So, it can be any order polynomial of any order x to the 

power 15 x to the power 20. It can be any order polynomial only criteria only 

requirement is that the leading order term in that polynomial. Has coefficient of 1 for all 

those polynomials 2 to the power 1 minus n T n. That is the Chebyshev polynomial of 

the same order scaled by 2 to the power 1 minus n is always going to give me the 

smallest maximum norm in the interval minus 1 to 1. 

The Chebyshev polynomial t n, we saw that is leading order term. So, if was something 

so if I scale that scale the Chebyshev polynomial with 2 into the 1 to power minus 1 n 

my leading order term in the Chebyshev polynomial is also going to be 1 is also going to 

be 1. Because, we saw what did we see that the Chebyshev polynomial leading 

coefficient of each Chebyshev polynomial is 2 n to the power minus 1.  

So, If I scale each Chebyshev polynomial by this factor 2, 1 to the power minus n then 

the leading coefficient is always going to be equal to 1.So, the Chebyshev I have, a set I 

have suppose I am I have n is equal to 20. So, and I have the Chebyshev polynomial of t 

20 Chebyshev polynomial for a 20 t 20 and I scale the Chebyshev polynomial with all 

the terms in the Chebyshev polynomial by 20 1 minus 20.So, 2 to the power minus 19. 

So, the first order in my first the leading coefficient is going to have the term the 

coefficient 1 it is going to have a coefficient 1. 

Now, that polynomial which I get after scaling the Chebyshev polynomial by 2 to the 

power 1 minus n that polynomial is going to have the smallest norm in the maximum 

norm in the interval minus 1 to 1 among all polynomials of order 20 provided. They have 

leading coefficient of the leading order term is 1. So, it is guaranteed that it is going to 

have this smallest norm, So, by dividing each term of any polynomial of order n we can 



ensure that the leading order term in the polynomial has coefficient 1 thus 2 to the power 

1 minus n t n has the lowest maximum norm I when I said maximum norm I mean norm 

in the I mean the norm maximum. The infinity norm I mean the infinity norm for the 

entire set of polynomials of order n suitably scaled. So, let us look at it again. 

By dividing each term of any polynomial of order n we can ensure that the leading order 

term in the polynomial has coefficient 1 thus 2 to the power 1 minus n t n has the lowest 

maximum norm in minus 1 for the entire set of polynomials of order n suitably scaled 

suitably scaled. That is divided by it is by the coefficient of its leading order term and we 

are going to show this but this is very important and is very useful.  
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A proof for this can be given in the following manner. Let us suppose that there exist a 

polynomial p n of x with leading coefficient 1 such that mod of P n of x is less than 2 to 

the power 1 minus n for all. x belonging to that interval minus 1 So, suppose we have a 

polynomial P n of x who’s leading coefficient with highest order term has coefficient 1 

and we have evaluated P n f P n of x at every point x in the interval minus one to one, 

and we have seen that the magnitude of the polynomial at each at after evaluation at each 

of those points is always less than 2 to the power 1 minus n. 

So, we have evaluated that polynomial at all points x belonging to minus 1 and we have 

found that the magnitude of the polynomial is less than 2 to the power 1 minus 1 that is 

our supposition. Recall that T n of x has n plus one extrema that is maximum or 



minimum values, we know that we have just seen that and the location of those extreme 

of those maximum and minimum values is given by x k is equal to cos of k pi by n k is 

equal to 0, 1 to through n in the interval minus 1 So, at these points T n of x k is equal to 

minus 1 to the power k T n T n of x. So, the extrema and recall that is given with the 

Chebyshev polynomials are basically cosines. So, the maximum minimum has to be 

either minus 1 and 1 or 1 and at these points at these extrema points T n of x k is equal to 

minus 1 to the power k where k is equal to 0. Through n hence we can write P n of x is 

less than 2 to the power 1 minus n times T n of x 0. Why, we know that P n of x the 

magnitude of P n of x is less than 2 to the power 1 minus n and at k is equal to 0. We 

know T n of x 0 is equal to 1.  

So, in that case P n of x 0 must be less than 2 to the power 1 minus n it is absolute value 

is less than 2 to the power 1 minus n. If, I remove the absolute value sin I know that this 

is positive so P n of x 0 must be less than 2 to the power 1 minus n times T n of x 0. 

What about x 1 t x 1 T n of x 1 is going to be negative x 1 is the 0 corresponding to k is 

equal to 1 at this point minus 1 to the power k. So, I know that is negative, So, I am 

guaranteed that P n evaluated at x 1 must be greater than 2 to the power 1 minus n times 

this is negative and if I know that the this is bounded, this norm of this is less than 2 to 

the power 1 minus n. So, P n of x 1 must be this is the lower bound that is the upper 

bound that is the lower bound. So, P n of x 1 must be greater than this value similarly, P 

n of x 2 must be less than. This value because this becomes positive then So, P n of x 2 

must be less than 2 to the power 1 minus n times this so what do we see, that P n of x 0 is 

basically alternating in sin. 
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Hence, the polynomial P n of x minus 2 to the power 1 minus n T n x must change sin in 

each interval. Let us go back and take a look again. So, P n of x is less than this P n of x 

is greater than that. So, P n of x 2 is less than that. So, if I construct a second polynomial 

basically, P n of x minus 2 to the power 1 minus n times T n of x that polynomial is 

going to be alternating inside. Here, it is going to be negative here it is going to be 

positive; here, it is going to be negative again. So, it basically alternates in sign.  

Hence, the polynomial P n x minus 2 to the power 1 minus n T n x must change sign in 

each interval x k x k plus 1 k is equal to 0 through 1 through n minus 1 between the 0 of 

T k . So, if I draw if I if on the x axis I have I mark out the 0 of my polynomial of my 

polynomial T n if I mark out the 0 and then if I evaluate this function. If I evaluate this 

function then I will find that this function is always changing sign between the 0 between 

it is changing sign it is become positive it is become negative. 

So, in those intervals since there are n such intervals in minus one to one since the n such 

intervals in minus one to one, this means this function must have n zeros in the interval it 

is changing sign in each interval it is changing sign between each between these 0. It is 

changing sign, that means between these 2, 0 it is it has a 0 between the 0 of the 

Chebyshev polynomial this polynomial has a 0 between each any 2, 0 of the Chebyshev 

polynomial this polynomial has a 0 and since there are n intervals n intervals between the 



0 of the Chebyshev polynomial that means there are n 0 of this polynomial has got n 

zeros. There are n plus 1 extremes, the n plus 1 extremes.  

So, between those 2 there are it is having a 0. So, there must be n 0, n 0 I hope I made 

myself clear. So, there are n 0 but let us look at this polynomial again P n of x minus 2 to 

the power 1 minus n T n of x we know that the leading order term of 2 to the power 1 

minus n T n of x is 1 because we have divide it by 2 to the power 1 minus n the leading 

order term of P n of x is also 1 that is what we assumed.  

P n of x is a polynomial with leading coefficient 1. So, what does that mean? That means 

that the leading order terms, they cancel each other out. So, that means that this 

polynomial P n of x minus 2 to the power 1 minus T n of x is not really a polynomial of 

order n it is a polynomial of order n minus 1 because it is cancel out the leading order 

term since, it is a polynomial of order n minus 1 it can have at most n minus 1 routes. 

A polynomial of n minus 1 a quadratic equation has 2 routes cubic equation has 3 routes 

polynomial of order n minus 1 can at most have n minus 1 routes. It cannot have n routes 

since so since a hence a polynomial P n. So, that means such a polynomial cannot exist 

hence a polynomial P n x with leading coefficient 1 such that mod of P n of x is lesser 

than 2 to the power 1 minus 1 in for any x belonging to this interval cannot exist because 

that was what we assume and if we assume that we got a conclusion, which is Peyton 

Craig are not be true, which is absurd, so that means such a polynomial cannot exist so 

that means, what does that mean, but mod of 2 to the power 1 minus 1 minus n T n of x 

is always less than 2 to the power 1 minus n; why because I know that mod of T n of x is 

T n of x has got extrema 1. 

So, mod of 2 to the power 1 minus t 2 to the power 1 minus n times T m, T n of x must 

always be less than 2 to the power 1 minus x, but we know that there can be no 

polynomial with leading coefficient one such that this is less than 2 to the power 1 minus 

n but in case of this polynomial we know that this is always less than 2 to the power 1 

minus n. That means this is the minimum, no other polynomial satisfies this condition, 

no other polynomial there exist with leading coefficient 1, which satisfies this condition 

that it is mod is less than 2 to the power 1 minus n, but I know that the Chebyshev 

polynomial scaled with this quantity satisfies that condition which shows that this 



polynomial 2 to the power 1 minus n T n of x has the smallest maximum norm in the 

interval minus 1 to n which is very important. 

This is the smallest that is got the smallest maximum norm in the interval minus 1 to 1, it 

does got very important implications, for error for finding out for optimum location of 

the grid points to minimize error. We shall see that.  
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So, this helps us to determine the optimum grid points this property of the Chebyshev 

polynomials is extremely useful in determining the optimum location of the grid points 

up till now. We have considered equidistant grid points but it turns out if I looked at an 

example a couple of lectures back where, we were trying to interpolate, a we were trying 

to find a fit a polynomial to the function 1 by 1 plus x square I think that was the 

function and we were using a 10th order polynomial and even then we found that there 

were very large mismatches near the boundary, if we used a equidistant grid I do not 

know if you remember that but we saw that. 

So, often times if we use the equidistant grid the errors specially for a higher order 

polynomials and specially at the ends of the interval become, very large therefore, that is 

why people want to find what should be the optimum location of the grid points.  

In order to minimize the error how should I locate my grid points? So, that my 

interpolate, where error I get from my interpolate is the minimum possible error and that 



is where Chebyshev polynomials play a very important role. Suppose, we wish to locate 

the grid points optimally in the interval a b the interval of interest where we are trying to 

do a polynomial interpolation if the independent variable is x 1 can always transform the 

interval a b to minus 1 to 1 where performing a simple substitution like that if righting x 

in terms of t. I can transform this interval a b to minus 1 to 1. So, it does not matter if my 

that the interval that I am doing, am I interested is not minus 1 to 1. I can always do a 

transformation in variables and convert that interval to minus 1 to 1 in this term the 

remainder term in the interpolation designed to fit the values of the function f at the 

points x, i is equal to 0, 1 through m is given by this. 

This we have seen earlier, the remainder term is given by this t minus t 0 t minus t 1 f m 

plus 1 xi and factorial m plus 1 where t 0 t 1 t m are the grid points this we have seen 

earlier. We have proved earlier. So, this is known and we recall that xi belongs to xi this 

function this value xi here, this value xi belongs to the interval which is the smallest 

interval which contains all the routes as well as x which includes t 0, t 1 through t m as 

well as t in this case t not x.  
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Therefore, xi depends on t. Here, depends on t because xi belongs to the interval. xi 

belongs to this interval. So, there is a dependence on xi on t but assuming f m plus xi to 

be bounded that we can give a maximum value to f m plus 1 xi in the interval of interest. 

We can write the remainder term as a polynomial. Where, b by b I am representing an 



upper bound to the maximum value of this quantity. So, we can write the remainder term 

as a polynomial like this, y is equal to b times t minus t 0 t minus t 1 t minus t 2 through t 

minus t n thus it is clear that this remainder term has 0 at t 0 t 1 t 2 t n that is it has got m 

plus 1, 0 remainder has got m plus 1, 0. 

Since, the remainder is a polynomial of order m plus1 the 0 of the remainder that is the 

error are therefore, about the same as the first neglected term of the expression. So, if my 

if I did not curtail it at m, if I did not curtail it at m the next higher order term it would 

have had m plus 1. It would have had m plus 1, 0 it could have been a higher order 

polynomial, It would have had m plus 1, 0s and those 0s are relatively close to the 0s of 

the remainder, Is that clear. But, so you bare with me. Assume that that is true. But, what 

I want to I will come back to this in the next class.  
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But, before I move to before I end this lecture. I want to talk about why the Chebyshev 

polynomial is important. So, we know that this is my remainder term and I know that the 

Chebyshev polynomial the Chebyshev polynomial the 0s of the Chebyshev polynomial 

give me the smallest have the smallest maximum norm the Chebyshev polynomial has 

the smallest maximum norm in the interval minus 1 to 1. So, if I locate my grid points t 0 

t 1 t 2 t n took of inside with the 0s of the m, Is that clear, f the m plus 1th order 

Chebyshev polynomial then in that case this remainder term this remainder term I am 

guaranteed that the remainder term has the smallest possible error in the interval minus 1 



to 1 that is why Chebyshev polynomials are very important. That is why the 0s are very 

important, because I know that the remainder term is given by this and these are 

coinciding with my grid points t 0 t 1 through t m are coinciding with the grid points. 

Now, if I make sure that my grid points coincide with the 0s of the Chebyshev 

polynomial, and then I am guaranteed that this polynomial which is basically, the 

remainder has the smallest possible maximum norm. In the interval minus1 to1, So, 

basically I am minimizing the error, in the maximum norm if I make sure that my grid 

points are located at the 0s of the next higher order Chebyshev polynomial is that clear 

that is why Chebyshev polynomials are so important and that is why the 0s give the 

optimum location of the grid points they give me the where I should locate the grid 

points in order to minimize my error term. In order to, minimize my error term in order 

to have the smallest possible error in the maximum norm is that clear. 

So, we will stop here, and we will continue with a further some further discussion 

Chebyshev polynomials which we rewind up, and then we will talk about orthogonal 

polynomials in general.  

Thank you. 


