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A series in numerical methods in Civil Engineering, we are going to talk about Error 

Bounds for linear systems. 

(Refer Slide Time: 00:24) 

 

However before doing so, we want to talk about one other method for solving linear 

systems in a chief and efficient manner. A method which is particularly suited for 

positive definite matrices, and as we know in civil engineering applications, we 

encounter a wide number of positive definite symmetric matrices, in a numerous 

applications. Particularly useful compact form for positive definite matrices is given by 

Choleski decomposition. 

It is based on the following theorem which says that for a symmetric positive definite 

matrix, there is a unique upper triangular matrix with positive diagonal elements such 

that, A is equal to R transpose R. Let us recall our L U decomposition, where we said that 



A can be written as the product of a lower triangular matrix and an upper triangular 

matrix. This is much more narrow than this, this criteria is much more narrow than this, 

it is says that A is equal to R transpose R, so basically what we are saying that a can be 

written in terms of an upper triangular matrix. 

And the lower triangular matrix is just the transpose of the upper triangular matrix, recall 

from the L U theorem we have a is equal to L U, where u 1 1 is equal to a 1 1, which is 

positive. U 2 2 is equal to a 2 2 2 and using the transformation rule for L U 

decomposition or for gauss elimination for that matter, u 2 2 is basically a 2 2 minus a 1 

2 by a 1 1 by a 2 1, which can be written as determinant of A 2 by determinant if A 1. 

Where we recall determinant of a k of with k can vary from 1 to n a k is the sub matrix 

form by the intersection of the first k rows, and the first k columns of A. So, A 2 is the 

sub matrix of A which is form by the intersection of the first two rows and the first two 

columns of A. So, u 2 2 in the second diagonal element is nothing but, determinant of A 

two divided by determinant of A 1, and for positive definite matrices we recall that all the 

sub matrices for k equal to 1 to n, that is all these sub matrices A 1, A 2, A 3 up to A n, 

they must all have positive determinants. So, what does this means, so it means that u 2 2 

must always also be positive, since determinant of A 2 will always be greater than 0 and 

determinant of A 1 will always be greater than 0. 
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Similarly, we can show that for any k, u k k the k th element on the diagonal of the upper 

triangular matrix, can be written as determinant of A k divided by determinant of the sub 

matrix of 1, 1 order less than A k, that is A k minus 1. And since this is a positive definite 

matrix both determinant of A and determinant of A k minus 1 are positive, so that 

guaranties that u k k will always be positive. 

So, next let us introduce the diagonal matrix D, whose diagonal elements comprise the 

elements which we just computed u 1 1, u 2 2 through u n n, which we just showed how 

to compute just before this. In that case the decomposition, the L U decomposition can 

be written as A is equal to L U, we can write it as L D D inverse U which is identical to L 

U. And then, write L equal to L D U prime, where we define an intermediate matrix U 

prime is equal to D inverse U, it is clear that both L and U prime are unit prime, L by 

definition is as got U one on it is diagonal. 

So, L by definition is unit triangular and now when we have defined U prime is equal to 

D inverse U, U prime is also going to have unit values on it is diagonal, because D 

inverse contains the inverse of the diagonal elements, so D of u. So, D inverse U will 

always going to have one on it is diagonal, so U prime is going to be an upper triangular 

matrix, only difference with U is that it has got 1 on it is diagonals. So, now we can write 



A is equal to L D U prime, where both L and U prime are unit triangular and also they 

are uniquely determined by the L U decomposition. According to a theorem earlier which 

we encountered, which say that the L U decomposition when it exist, it has to be unique. 
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Since A is symmetric, we can write A is equal to A transpose which means from ((Refer 

Time: 05:55)) this expression on the right from the last equation which means that, A 

transpose is equal to U prime transpose D L transpose. So, comparing this equation with 

the equation A equal to L D U prime you can by comparing terms, we can show that L 

transpose is equal U prime which is equal to D inverse of U. 

Next we denote R another matrix with as D minus half U, where D minus half has 

positive diagonal elements u k k minus half. So, R is D minus half U, how do you found 

D minus half, D minus half is we already know how to found D, we have from D taking 

the diagonal elements of U. And D minus half we just take the square root of the 

diagonal elements, it is just the square root of the diagonal elements of course, one by the 

square root of the diagonal elements and if we define R is equal to D minus half U. 
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Then, we can write R transpose R is equal to U transpose D minus half transpose, which 

is identical to D minus half, since D minus half is a diagonal matrix, D minus half D 

minus half U which is equal to U transpose D inverse U. ((Refer Time: 07:31)) But, let 

us recall L transpose is equal to D inverse U which we have obtained earlier, therefore D 

inverse U is equal to L transpose, therefore R transpose R is nothing but, U transpose L 

transpose and taking the transpose of both sides, we get R transpose R is equal to L U 

which is equal to A. Thus this shows that it is possible to write A as a product of a matrix 

R it is trans and it is transpose; and this also shows that, it is always possible to write U is 

equal to L transpose for positive definite symmetric matrices. 
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Let us go back to the L U decomposition and recall that for the K th step of the L U 

decomposition, we use the following equation a k j is equal to sum over p equal to 1 to k 

m k p u p j, where j is greater than or equal to K, that we are constructing the part which 

is above the principle diagonal at or above the principle diagonal. And a i k is equal to 

sigma p equal to 1 to k m i p u p k i greater than K, which is the part which is below the 

principle diagonal. 

We can write this as a k j is equal to m k k u k j plus sigma p equal to 1 to k minus 1 m k 

p u p j, basically we have combining both these equations and writing it like that, where 

we have taken out the term, the K th term and we have kept the rest of the terms within 

the sum. So, we can write to combine both the equations and write it like that, so we can 

write in that case m k k u k j just by moving the terms to the left hand side, m k k u k j to 

the left hand side, m k k u k j is equal to a k j minus sigma p equal to 1 to k minus 1 m k 

p u p j. 

So, actually let me go back a little bit and maybe I should clarify ((Refer Time: 10:12)) 

this equation is nothing but, this equation and this equation we are going to handle in the 

next slide. So, it is not that it is combined I am missed spoke, but a k j is just this 

equation, where have taken out the term K th term outside the summation sign. 
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In the next slide, we have the second equation which is a i k is equal to m i k u k k plus 

sigma p equal to 1 to k minus 1 m i p u p k, which is basically ((Refer Time: 10:48)) this 

equation, after I have taken out the k th term outside the summation sign. And we get 

that, so again rearranging terms we can write m i k is equal to a i k minus sigma p equal 

to 1 to k minus 1 m i p u p k divided by u k k, when now i is equal to k plus 1 k plus 2 

through n. 

If U is equal to L transpose, then u k k is equal to m k k, so m are the diagonal elements 

have to be the same, while the off diagonal elements suggest the transpose of each other. 

So, u p k is equal to m k p, since U is equal to L transpose recall the elements of m 

comprise the elements of L, U comprises the elements of U. So, since U is equal to L 

transpose that means, the diagonal elements have to be equal L u k k must be equal to m 

k k and u p k is equal to m k p. 

From the previous equation from star j is equal to k, we can write it as m k k u k k, which 

is and we know u k k is equal to m k k, so the left hand side becomes m k k square. And 

the right hand side becomes a k k minus sigma p is equal to 1 to k minus 1 m k p u p k, 

let us go back and see what it look like, it look like m k p u p j. And we have utilize that 

in said m k p u p k and that is equal to a k k minus sigma p equal to 1 to k minus 1 m k p 



square, because u p k is equal to m k p from the symmetry from U is equal to L 

transpose. So, we can write m k k is equal to a k k minus sigma p equal to 1 to k minus 1 

m p k p square to the power half, what does this tell us, this basically tells us how we can 

go about our algorithm. 
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So, what this tells us is becomes clear of we look at the next slide, so this is our Choleski 

decomposition graph, so this is the particular stage in a Choleski decomposition, suppose 

of at the K th step. At the K th of the Choleski decomposition, where the red part is 

already known that is the upper triangular part which is already we found, the blue part 

consist of the multiplies which have already being formed. 

And the grey part is not known, not known means it is still got be modified it is already 

the original matrices known, but it has not yet reach it is final firm after Choleski 

decomposition. So, what this says is that at the K th step what we are going to do is, we 

are going to change this yellow part, the yellow strip corresponding to this column and 

the yellow strip is corresponds to the part of this row, this is going to be changed. So, at 

the end of the step, this grey region will become smaller it will become like this and this 

part is going to, we are going to find the new values of this part. 



So, how do we go about doing this, well the previous equation ((Refer Time: 14:37)) this 

equation tells us how we are going to change the diagonal element, this tells us how we 

are going to change m k k this term, which is basically the diagonal element here. And it 

is says that how are you going to form the diagonal element, well the diagonal element is 

going to deformed by a k k, which is the existing value here minus m k p square, where p 

is equal to 1 to k minus 1. So, this m k p square terms are the terms here, the terms on 

this row up to k minus 1, so up to the diagonal term. 

So, as you can see the information that it means for updating this element is already 

known, because this we already know the final form of this, and this is just the diagonal 

the current value of the diagonal. So, it uses these two values, this minus this square to 

form the diagonal element, so next let us look at how it updates the off diagonal 

elements. So, we know how it forms this element, we know how we forms the diagonal 

element, so if we can makes find out how we can update this column, we are all said. 

Because, since this is symmetric matrix if we have updated the column, we have also 

updated the row, so you only need to find out how to update this part of this column. And 

that is given by the second equation, the second equation which is double star m i k 

((Refer Time: 16:32)) this equation, this equation tells me how to update that column and 

let us see how we do that. 
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This equation can be rearranged as m i k, basically I am rewriting ((Refer Time: 16:48)) 

this equation m i k is equal to a i k minus sigma p equal to 1 to k minus 1 m i p m k p 

divided by m k k i equal to k plus 1 through n. And you can see from a previous picture, 

so for instance if we want to update this element on the column, we just need to take the 

product of this vector, this vector with that vector. So, this times that I mean as a column 

vector, this is a row times that becomes a column vector row times this column gives me 

this updated value. 

So, again to compute the updated value, we only read terms in the blue or red regions of 

the matrix, that is we only deal with terms which already known which is the significant 

advantage of this method. The right hand side of these expressions contain known 

quantities from the previous k minus 1 steps, so this minimizes storage this is more 

((Refer Time: 18:01)). And this method is known as Choleski's method or the square root 

method, why is it call this square root, because to compute the diagonal terms we have to 

take the square root of this expression. 

But, it is well known I mean it is that computing square roots is expensive, square root 

computation in any numerical, any computer the square root is at the most expensive, 

probably the one of the most expensive numerical operations that you can perform, other 



than for instance taking trigonometric functions such as sin, cosine and so on, and so 

forth. So, we would like to avoid taking square roots if possible, in ordered to will 

increase the efficiency of our computer program. 
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So, what is normally done is that, people decide to instead of going through this 

processes, instead of doing Choleski decomposition, exactly as  I discussed earlier. What 

they do is to go ahead with Gaussian elimination and then, obtained the triangular matrix 

U and then, compute the R matrix, so we use this relation A is equal to R transpose R is 

equal to U transpose D minus half D minus half U. 

So, compute R in terms of D and U and this allows us to write the decomposition of the 

system, as A is equal to U transpose D minus 1 U, so A is equal to U transpose A x is 

equal to U transpose D minus 1 U x and then, we write D minus 1 U x as y. So, we write 

this system becomes U transpose y is equal to b and then, after we have solved for y we 

solved for x by solving the system U x equal to D y. So, again we solve two triangular 

systems U transpose y equal to b and U x equal to d y, again it is noticeable here that L is 

no where formed. 

So, we are taking the advantage of the fact that for a symmetric matrix, symmetric 



positive definite matrix you can write instead of A is equal to L U, you can write A is 

equal to R transpose R. So, we are taking advantage of the fact without having to 

compute this square root, which makes the Choleski decomposition expensive, why do 

not we have to compute the square root, because we are never explicitly computing D 

minus half, we are always computing D only in this way. 

So, this takes advantage of the fact that for a symmetric positive definite matrix, you can 

write A as R transpose R, but it does not require taking the square root. And let us recall 

that, but the prerequisite for this is to perform the Gaussian elimination, because we have 

to calculate U. But, recall that for Gaussian elimination for positive symmetric definite 

matrices, we do not require any pivoting at all; so Gaussian elimination for positive 

symmetric definite matrices is relatively assumed. 
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Next let us switch to slightly different topic which is related, but which is a very great 

importance and when you are trying to solve practical problems, which have got very 

large coefficient matrices. We often encounter symmetric positive definite matrices, for 

instance in finite elements by the location of the non-zero elements differ greatly from 

row to row. For instance, in one row there might be, the size of the row is n, you might 

have it may be very fully populated or it may be almost fully populated. 



While in another row or column, it might have just a few non zero elements which are 

probably located localize near the diagonal. So, for these matrices, we want to take a 

advantage or certain special storage scheme, because if there are lot of zeros in a matrix, 

we do not want to store the zeros. Because, they occupy memory, they increase the size 

of the matrix, if we can figure out clever way of reducing the storage we have and are if 

the efficiency of algorithm increases significantly. 

So, special storage schemes have been device for such matrices for example, various 

profile storage schemes, which have two goals, first of all the reduce storage, they reduce 

the requirement to store all the zero elements. So, the reduce the storage and number 2 

they allow fast access to the elements of the matrix during the computations, when we 

are processing in a matrix, we want to access the elements of the matrix, we want to able 

to do it as fast as possible. In order to reduce the computational cost, so these special 

storage schemes have these two goals, so reducing storage and allowing fast access. 
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One of the most well known storage schemes for this is known as a skyline solver, and in 

the skyline solver the upper triangle of each symmetric matrix is stored column by 

column. But, the entire column is not stored, in each column only the elements from the 

first non zero entry to the diagonal are stored, for each column all zero entries from the 



from the first entry up to the non zero entry, they are not stored. So, only the diagonal 

and the first non zero entries in that column are store, the zeroes contained between the 

first non zero entry and the diagonal are of course store, but any zero is above the first 

non zero entry are not stored. 
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So, matrix is thus represented by a vector S is equal to S 1, S 2 through to S mu n, and in 

addition we need a pointer vector which contains the location of the diagonal elements. 

This pointer vector is mu which has got n entries with mu 1 representing the location in 

S, where the first diagonal elementary sides of a S, mu 1 is always got to be 1, because 

for the first column the diagonal element is the first entry. So, mu 1 is equal to 1, but mu 

2 is gives me the location in that row vector S, where the second diagonal element 

resides. 

Similarly, mu 3 gives the location in that vector S where the third diagonal elementary 

sides and mu n, gives the location in S, where the n th diagonal elementary sides which 

always has to be the last entry in the S vector. So, if we want to extract element a i j of 

the matrix where j is greater than i, then we can use this following rule and which says 

that if j minus 1 is less than mu j minus mu i which means that, the element a i j lies 

within the skyline, then a i j is equal to S p, where p is equal to mu i plus j minus 1. 
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So, this will become clear from an example which we are going to look at earlier, if on 

the other hand, if j minus 1 is greater than mu j minus mu i, that is the element a i j lies 

outside the skyline, then we do not need to ((Refer Time: 26:04)). Since, outside the 

skyline we can by definition in that a i j is equal to 0, for instance let us look at this 

matrix A equal to this. 

And you can see that in this matrix, we are going to store only the elements in the upper, 

this is the symmetric matrix of course, and we are only going to store the elements in the 

upper triangular matrix, which are below the first non zero term in a column. So, in the 

first column we are going to store 25 3, in the first column we have only going to store 

25 which is the diagonal element, because we are storing only the elements at or above 

the principle diagonal. 

So, the first column we are going to store 25, in the second column we are going to store 

3 as well as 21, since 3 is non 0, but in the third column we are not going to store this 

leading 0. We are only going to store 2 and 23, we are only going to store the all the 

elements at or below the first non zero entry in the upper triangular part of the matrix, in 

this column. 



So, we are going to store 2 and 23, in the fourth column again we are not going to store 

this 0, we are going to store 4, but we have also that to store 0, because 4 0 is occurring 

after the first non zero entry in the column. So, I going to store 4 0 and 22, but in the fifth 

column, we are going to not going to store all these 0's, so I going to save a lot of 

storage. And then, we are just going to stored the diagonal element which is 20 same 

thing for the last column which is a sixth column, we are not going to store all these 

leading 0's and we are just going to store 35. 

So, my S vector will be this, so we have reduced the storage significantly however, we 

have also need to store this mu vector, this mu vector tells me which is the position in 

this column which has the first diagonal matrix. So, the first diagonal element is at the 

first entry in this columns, so it is stores 1, the second diagonal element which is 21 is at 

the third location in this column, so it is stores 3. The third diagonal element 23 is at the 

1, 2, 3, 4, 5th location in that column, so it is stores 5, so it is stores the diagonal pointers 

and it stores this skyline like this. So, the total storage of course, is given by the length of 

this S vector and the length of the mu vector. 

(Refer Slide Time: 28:57) 

 

And in this case we can see this length of the S vector is probably 10 and the length of 

the mu vector is 6, so the total length of this storage is 16. However, how much have be 



saved storage by if we actually stored the full upper triangular matrix, you would have to 

store n square by two terms, so we have save this storage by n square by 2 minus 16, 

which in this cases 36 by 2 that is 18 minus 16 is equal to 2 which the saving is 

comparatively less for the small matrix. 

But, for real problems real world problems where you can have thousand by thousand or 

may be hundred thousand by hundred thousand matrices, you save a lot of storage by this 

profile using this skyline solver. However, even if a compact storage scheme is adopted it 

is of limited usefulness, if successive stages of a numerical algorithm introduces a large 

number of non zero elements. 

The efficiency of ((Refer Time: 30:22)) this scheme is because there are lot of zero 

elements that is why we can save storage, but suppose we start with an initial matrix 

which has got a lot of zero elements. But, then during a Gaussian elimination a lot of, 

because of pivoting a lot of those zero elements become non zero, in that case again now 

storage is going to increase. So, it is advisable to try a pivoting scheme which does not 

increase the number of non zero elements. 
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Hence, it is desirable to use an algorithm, which is both numerically stable and 



sparseness preserving, why because numeric stable, because we know that unless we do 

pivoting for non positive definite matrices, we can now in count a numerical in stability. 

So, some amount of pivoting is absolutely essential, but we want to also achieve the 

competing goal, which is that we want to preserve sparseness not only we want to ensure 

numerical stability, but we also want to preserve sparseness. 

Partial pivoting for Gaussian elimination is not normally advantageous from the 

sparseness preservation point of view, an alternative pivoting scheme known as threshold 

pivoting scheme can be adopted. In this pivoting scheme the pivot element is chosen to 

be a a k at the k th step the pivoting element is chosen to be a k prime k, if a k prime k is 

greater than tau times maximum of mod of a i k, i is greater than k and tau is a pre set 

threshold value lying between 0 and 1. 

So, for come for partial pivoting for full partial pivoting, if we choose as the pivot the 

element on the column in the k th column, which has the largest absolute value right, for 

partial pivoting we choose as the k as the pivot the element on the k th column which has 

the largest absolute values. So, basically for partial pivoting we will choose maximum of 

a i k i greater than k that is what we would choose for full partial pivoting. 

Therefore, threshold pivoting we are saying that we do not have to choose this maximum 

value we can choose a value which is may be, if tau is equal to half which is half this 

maximum value. If my pivot if i k prime which is which is of course, less than i the 

assumption is k prime is less than i. So, I am looking down, I am going down from the k 

th row and I am moving downwards and I am going to choose if I am going to do full 

partial pivoting I will move downwards throughout the entire column. And choose the 

element in that column which has the maximum positive value as the pivot. 

But now if I am not being full partial pivoting I do not have to choose the absolute 

maximum value I can choose as pivot an element which is may be half the maximum 

value. In if my largest maximum value is at distance of 5 from k and if my half the 

maximum values at distance of 3 from k. Then if I choose 3 as the pivot rather than if I 

choose a 3 k as the pivot rather than a 5 k I am the possibility of my increasing the of my 

reducing the sparseness becomes less, because I am going to do less switching. 
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Normally in partial pivoting the largest element of the column is chosen as the pivot; 

however, the row interchange following the selection of the pivot may adversely affect 

the sparseness of the matrix. Hence instead of choosing the absolute maximum entry in 

the column as the pivot, we choose the first element of the column which is a certain 

fraction of the value of the absolute maximum entry; which it is seen this algorithm helps 

in preserving the sparseness, it is better preserving sparseness then doing full partial 

pivoting. 
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. 

This helps achieves the twin goals of numerical stability of the computations, because we 

are doing a some pivoting at least as well as preserving the sparseness as far as possible. 

If tau is equal to 1 then of course, the usual partial pivoting is obtained during 

elimination some of the zeroes of a which are contained between the first non zero 

element in a column and the diagonal will be replaced by non zero elements. This is not a 

problem, because our profile storage scheme accounts for that because we stored all the 

elements which are below at or below the first non zero element in a column. So, if there 

is zeroes below the first non zero element will automatically stored, so that is not a 

problem. 



(Refer Slide Time: 35:51) 

 

Next, so with all that discussion next we move on to a main focus in this lecture which is 

error analysis of linear systems. In practical solutions of linear systems A x is equal to b 

elements in both the coefficient and the right hand side b are approximate particularly 

when a and b represents certain physical quantities they are always there is always going 

to be may be a and b has been obtained from experimental data, so they will always b 

approximate. 

Recall from earlier bounds on the error in the results of simple arithmetic operations such 

as addition multiplication etcetera depend on the errors in the operands for instance we 

found bounds on the errors on in addition. And we said that that bound on the error, the 

error in addition is bounded by the some of the error in the operands right; similarly we 

found errors in the bounds on the errors in multiplication and division 

Also we looked at bounds on the error of a function due to errors in the independent 

variable. So, if y is equal to function of x 1, x 2, x 3 to x n then we found a bound on the 

error in y, if we know the errors in the independent variables x 1 through x n. So, we 

derive that relationship, these results can be used to bound the uncertainty in the solution 

x due to discrepancies in A and b. So, due to discrepancies in A and b because of errors 

we want to find out what will be the maximum possible error in the in x. So, suppose we 



know that error in A, suppose we know the error in b we want to find out what will be 

the maximum possible error in my solution x. 
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In addition to the errors in a due to discrepancies in A and b additional round of errors 

accrue during numerical solution of x is equal to A inverse b bounds on these errors too 

are desirable. So, there are two sorts of errors in linear systems the first sort of error is 

due to discrepancies in the values of A and b when there is some error in A and b are not 

known exactly because may be they are coming from experimental data’s. So, there are 

errors in the elements of a in the elements of b, but then there are additional errors which 

we have during the Gaussian elimination, whichever solution proceed we adopt to solve 

the x is equal to A inverse b additional errors we will on during the solution. So, we want 

to know bounds on those errors too. 

One simple way to get an estimate of the error during the numerical solution of A x is 

equal to b is to compute the residual vector, that is after we solve for x we compare r is 

equal to x minus A b actually this should be a inverse b x minus A inverse b; because we 

have solve for x by taking a inverse b. So, we compare that x is equal to A inverse b and 

we get our residual. If the solution is exact the residual is exact r is equal to 0 and one we 

assume that the smaller the value of r the more accurate the solution right, so the residual 



is 0, so then we can say that my solution is more correct. 
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However this is not always is true for ill condition systems let us considered the system a 

with a coefficient matrix A given by the matrices square brackets there and b by the 

column vector given there. So, suppose we get the solution of the system as x is equal to 

the 0.9911 and minus 0.4870 in this case r is equal to A x minus b is given by minus 1 

into e to the power minus 8 and 1, e to the power minus 8. So, the residual is very small; 

however, the exact solution for this problem is x is equal to 2 minus 2. So, even though 

the residual is small a x where x has been computed from by solving that linear system a 

x is differing from b by a very small magnitude by minus of magnitude by column vector 

whose largest value is largest entry is 1 into 10 to the power minus 8; however, even 

though the residual is small the exact solution is way off, thus in this case although the 

norm of the residual vector extremely small the error is large why is this. So, this is, so 

because my matrix a is extremely ill condition. 
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So, this will become evident if we look at the Gaussian elimination of the system where 

at the second after eliminating x 1 at the second step we get a 2 2 2, x 2 is equal to b 2 

and if we calculate a 2 2 it becomes 10 to the power minus 8. So, this system by 

definition has got very poor numerical stability. Since the pivot is extremely small very 

small changes in a 2 2 will lead to large changes in x 2. So, basically my solution for this 

system by Gaussian elimination is going to be arbitrary, minor change is minor 

perturbation will give very large differences in the solution. So, for ill conditioned 

systems the size of the residual is not indicative of the error at all. 
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So, that is for ill condition systems, therefore we have to figure out some better way to 

decide how to figure out the norm of the error and then to bound the error to decide what 

are the postulate bounds on those errors. To quantitatively discuss errors in the solution 

of linear systems, we have to decide on measures of magnitude of error; recall the l 2 

norm of a vector and a matrix which we discussed earlier is given by norm of a vector x 

is given by root of x dotted with x. And the norm of a matrix l 2 norm of a matrix is 

given by this square root of the inner product of a with itself that is a i j a i j. 

The infinite norm is given by for a vector x infinity is equal to maximum of x i 

maximum of the absolute value of x i for i is equal to 1 through n and the infinite norm 

of a is given by maximum of i i lesser than equal to i, greater than equal to one lesser 

than equal to n sigma i equal to one to n mod of a i j. So, basically we are summing the 

absolute values of all the entries in a row and then we are taking the maximum over the 

column maximum over each column. So, for basically what we are doing is that we are 

looking at it row by row and we are summing the absolute values of the entries of all the 

elements in that row right; and then we are taking the maximum of those values over all 

the rows, so that gives me my infinite norm of a matrix. 

In general if a matrix and vector norm satisfies this relation which is norm of a x is lesser 



than or equal to norm of a times norm of x for any a and x then the norm is said to be 

consistent. So, both my both my l 2 norm and my infinite norm, i consistent norms 

because the satisfies this relation norm of a x is norm of a x means the norm of the vector 

which is given by a x is lesser than or equal to the norm of a which is a matrix norm 

times the norm of x which is a vector norm. So, if any norms satisfy this relationship, 

then for any matrix and any vector a and x then the norms are said to be consistent 

norms. 
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So, we will use these norms to develop error bounds for the linear system assuming a and 

b are known and then try to estimate the effect of perturbations in a and b, first let us 

assume that we have perturbations in b only. So, we do not know exactly where b is, we 

know b plus delta b, where delta b is the perturbation in b, because there is a perturbation 

and b the solution to my linear system is no longer going to be x, it is going to be x plus 

delta x. 

So, a x I am going to solve the system a x plus delta x is equal to b plus delta b, so this 

gives me a x is since a x is equal to b this gives me delta x is equal to a inverse of delta b 

and if for any consistent norm recall how we have define consistent norm here. So, for a 

consistent norm this has to be true, so delta norm of delta x must be lesser than or equal 



to norm of a inverse delta b. And this norm of delta x must be equal to norm of a inverse 

delta b and norm of a inverse delta b must be lesser than or equal to norm of a inverse 

times norm of delta b, since that since my norms are consistent norms. 
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Next let us consider the effect of perturbations in a, that is delta a, so a is not known 

correctly. So, suppose we just know a plus delta a again that solution is going to change 

this solution is no longer going to be x it is going to be x plus delta x. So, now, we have 

the equation a plus delta a, x plus delta x equal to b, so we have a delta x plus delta a x 

plus delta x is equal to 0, because again a x is equal to b. So, a x and b cancels out from 

both sides this gives me delta x is equal to minus a inverse delta a x plus delta x. 

Again for any consistent norm delta x is equal to norm of a inverse delta a x plus delta x, 

but norm of a inverse delta a x plus delta x must be lesser than norm a inverse times 

norm of delta a x plus delta x, which must again we less than norm of a inverse times 

norm of delta a times norm of x plus delta x. So, we get this expression and dividing both 

sides by norm of x plus delta x, we have this expression norm of a norm of a inverse 

norm of delta a by norm a, norm of a norm of a of course, this is cancelling now norm of 

a inverse norm of delta a. 



And this quantity is what is known as the condition number of a matrix this is basically, 

this quantity is known as the condition number of the matrix norm of a times norm of a 

inverse and actually there is a printing error here. So, this is actually norm of a times 

norm of a inverse, the inverse should be inside the norm. So, norm of a times norm of a 

inverse times norm of delta a by norm of a. So, this is the condition number times norm 

of delta a by norm of a. 
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K A is the condition number of the matrix a with respect to the current norm if the 

condition number is large then from star small relative perturbations in A will produce 

large changes in x let us look at this expression again. So, if my condition number is 

large small relative perturbations in A that is small values of if normal delta A by norm of 

a is small, but my condition number is large, then my solution the change in the solution 

will also be large. So, this is very important the condition number is the crucial factor. 

So, even for small changes in a in when norm of delta a is small, I am going to get a 

large change my error is going to be large for a large condition number. 

So, again let us recall norm of delta x is lesser than or equal to A inverse norm of delta b 

which we have obtained earlier, norm of delta x is lesser than or equal to norm of a 

inverse norm of delta b. So, again dividing both sides by norm of x norm of delta x by 



norm of x is lesser than or equal to norm of A inverse norm of delta b by norm of delta x 
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Since A x is equal to b we can write norm of b is equal to norm of x and again because 

the norms are consistent we can write this is less than or equal to norm of a times norm 

of x. So, 1 by norm of x from this expression one by norm of x is lesser than or equal to 

norm of A by norm of b, then because of this norm of delta x by norm of x is lesser than 

or equal to norm of a inverse, norm of delta b norm of A by norm of b, how do we get 

this. 

Well we use the previous relation which we got here which says that the delta x by norm 

of x is lesser than or equal to norm of A inverse norm of delta b by norm of x. So, we use 

that relation here to get this expression and again we identify norm of A inverse times 

norm of A is A here it is right. So, it is a norm of a inverse not A norm of A inverse. So, 

norm of a inverse times norm of A that is if the condition number of A, this is equal to 

norm of delta b by norm of b. So, again this again shows that if the condition number of 

k A is that condition number, k A is large then small perturbations in b is going to give 

me large relative changes in x. So, in both cases condition number is crucial. 
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So, in the previous case also we saw that if the condition number is large then small 

changes in the coefficient matrix are going to produce large changes in the solution. 

Similarly, here we show that if the condition number is large small changes in the right 

hand side is also going to give lead to large relative errors in the solution. So, the 

condition number of a matrix is a very crucial quantity in determine how much is the 

error going to be if either my coefficient matrix or my right hand side is slightly off has 

got errors. 
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Thus in general for ill conditioned systems minor changes in the input data that is the 

values of A and b will produce large changes in the solution x; however, it is not straight 

forward to calculate the condition number why because if we have to compute the 

condition number as the norm of a inverse stands norm of a we have to first invert a and 

the inversion of a is a highly expensive operation. So, it is not always use or it is not 

always practicable to compute the condition number. 

So, we have to come up with certain other ways of computing the bounds on the error in 

a linear system, but condition number if known that gives me very detailed information 

about the error bound if there is an error in the coefficient matrix or in the right hand 

side. 
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So, in the next part of this lecture we are going we have planning to talk about errors due 

to round off. So, up till now we have talked on errors due to in perfect knowledge of the 

coefficient matrix and the right hand side; however, Gaussian elimination. So, we will 

suppose we know on coefficient matrix in a right hand side and then we do the Gaussian 

elimination. But, Gaussian elimination involves a large number of floating point 

operations the accumulation of round off from this individual floating point operation is 

also going to delete to more errors it is going to accumulate errors are going to 

accumulate. Therefore it is necessary to obtain a bound on the overall round off error due 

to Gaussian elimination, but in order to do that we have to bound the errors due to the 

individual floating point operations and we are going to talk about this in the next lecture 

in this series. 

Thank you very much. 


