
Numerical Methods in Civil Engineering
Prof. Arghya Deb

Department of Civil Engineering
Indian Institute of Technology, Kharagpur

Lecture - 7

Error Bounds and Iterative Methods for Solving Linear Systems

In the seventh lecture in our series in numerical methods in civil engineering, we are

going to continue our discussion on error bounds for direct methods in addition. We are

going to introduce iterative methods for solving linear systems.

(Refer Slide Time: 00:31)

The bounds we obtained till now on the errors due to our on the errors on the solution of

linear systems, were due to imperfect knowledge of the coefficient matrix, and the right

hand side. Basically what we what we found was that if the coefficient matrix has an

error delta a or the right hand side has an error delta b, we try to find bounds on the

errors that will be introduced to the solution x due to the errors in a and b, due to the

error delta a in a, and the error delta b in b that is going to result in solutions to errors to

the solution x. And we try to find the bounds on those errors and what we found was that

if the matrix is depending on the condition number, if the matrix is well conditioned then

errors due to in the coefficient matrix, and the errors due to the right hand side will be

bounded, and it is going the magnitude of the bound is going to depend on the condition

number of the matrix of the coefficient matrix.

Today, we are going to talk about errors in Gaussian elimination, because of the large

number of floating point operations, which take place during Gaussian elimination the

accumulation of round off errors due to these floating point operations lead to overall

errors in the solution, and is therefore a problem to obtain a bound on the overall round

off error, it is necessary to bound the errors due to individual floating point operations.

Since the Gaussian elimination process is a combination of a large number of floating

point operations, we have to find bounds on the error of individual floating point

operations in order to find a bound on the error of overall error, due to in the solution due

to round off during Gaussian elimination.

(Refer Slide Time: 02:45)

We consider the floating point decimal representation of a number a suppose we have a

floating point number a how does the computer represent that number internally, well the

computer almost always represents the number using this format. It represents it as some

number m and times 10 depending on the base of the computer, if 10 is the base then that

will be 10 there if instead of the instead of 10, it is some other number some other base

then that is going to be the appropriate base. So, 10 to the power q where m lies between

0.1 and ones m m is a number between 0.1 and 1 and q is an integer. So, m is known as

the mantissa and q is known as the exponent. So, this is how the computer represents any

floating point number a, but in reality the computer cannot represent m up to infinite

precision.

Because the computer has finite precision for instance if the computer rounds off floating

point numbers to t decimals, then a will not actually we the computer will not actually be

storing a, it will be storing an approximation to a which is denoted by a bar and the

approximation arises; because m is only the computer only stores an approximate

representation of the mantissa m m bar, which is rounded off to t decimals given that the

precision of the machine is t decimal digits. So, the So, m bar is the approximation of m

which is stored in the computer. Hence the bound on the absolute error in the mantissa m

is given by m bar minus m, which is less than or equal to half 10 to the power minus t

this we have obtained in a previous lecture. So, the error is bounded the round of error is

bounded by half into 10 to the power minus t.

(Refer Slide Time: 04:59)

That was the bound on the absolute error in the mantissa, if we look at the relative error

in a that is given by a bar minus a by a which is by definition the relative error. So, this

has got to be less than or equal to m bar times 10 to the power minus q minus m dotted

with 10 to the power q m dotted with 10 to the power q. That is simply because m bar

minus m is less than or equal to 10 to half 10 to the power minus t sorry. So, we can

write that as this is the m bar minus m dotted with 10 to the power q 10 to the power q

divided by m bar 10 to the power q is lesser than or equal to half 10 to the power minus t

10 to the power 10 to the power q 10 to the power q cancels out, this is we know is lesser

than or equal to half 10 to the power minus t, and since mod of m if we go back to the

previous slide and see m is lesser than or equal to point one and greater than or equal to

point one less than or equal to one.

So, if we if we replace mod of m by point one this has always got to be greater than,

because we are taking the smallest possible value of m in the denominator. So, this thing

has to be less greater than or equal to this thing this thing has to be lesser than or equal to

this thing, and this gives me a bound half in to 10 to the power one minus t. A correction

this is this should not be lesser than or equal to this is actually equal to right. So, mod of

a bar minus a by a is equal to m bar dotted with 10 to the power q minus m 10 to the

power q divided by this which is equal to this, but this is lesser than or equal to this

because on in the denominator, we have replace mod of m by its smallest possible value

which is 10 to the power minus 1. So, we get this bound on the relative error in a.

This limiting value on the relative error due to round off is denoted as the machine unit

as you can see this is totally dependent on the machine precision t. So, the relative error

due to round off in a floating point number cannot exceed the machine unit of the

computer denoted as this whole thing denoted as u.

(Refer Slide Time: 07:51)

Next let us consider the effect of operating on two floating point numbers x and y, and

let as denote the true result of the operation as x op y, and the floating point

representation as float of x op y. So, x op y is the true solution and this is how the

computer is going to represent this.

So, the relative error due to since the relative error due to round off is bounded by u, we

can say that f l x op y minus x op y is lesser than or equal to mod of x op y times u;

which is exactly what we get if we replace a bar here a bar here by f l x op y, and a

which is the true solution by x op y right. So, this is what we get this is the bound on the

relative error now; because this is less than x op y times u we can be sure that, there is a

there is number delta with mod of delta lesser than or equal to u such that this becomes

equal this is lesser than or equal to mod of x op y times u. So, there must exists a number

for which this becomes equal to that right, and this gives this gives rise to this expression

floating point of x op y is equal to x op y one plus delta. So, this is how the computer

represents x op y, this is the true solution and the true solution times this error one plus

delta is the floating point representation of the result of the operation of x op y.

(Refer Slide Time: 09:45)

Next let us go back to the Gaussian elimination, and let us recall that in the k-th step of

the Gaussian elimination of symmetric matrix the elements are transformed as the

following a i k k plus one is equal to a i j k minus m i k, where m i k is the multiplier

times a k j k at the k-th iterations k-th step; which is equal to a i j k minus a i k k by a k k

times a k j k, and you can see that we have summing we have j j goes from k plus one to

n, where we have taken advantage of the fact that the matrices symmetric, because of

round off the computed values of each of the quantities on the right hand side will differ

from this true values and result in additional errors. So, instead of a i j k what is actually

stored in the computer is a bar i j k right, where a bar i j k includes the floating point

errors right it includes the round off errors. So, it is the floating point approximation

right.

So, a bar i j k plus one is equal to a bar i j k minus m bar i k a bar k j k. So, here when we

when we compute m bar i k from a bar i k divided by a bar k k. Since this is the floating

point operation, we introduce certain errors certain round off errors right, and this round

off error is denoted by one plus delta one. So, this is the error in the computation of m

bar i k then we subtract m bar i k a bar k j from a bar i j k. So, this operation the

subtraction operation introduces additional floating point error, which is denoted by one

plus delta two and then on top of let me let me take a step back.

So, this subtraction operation introduces additional floating point error which is given by

1 plus delta 3, and this operation m bar i k a bar k j k introduces floating point of error

which is given by m bar i k a bar k j k one plus delta two. So, this operation introduces of

floating point error which is given by one plus delta two this subtraction operation

introduces a floating point error, which is given by 1 plus delta 3 and this division

operation introduces a floating point error which is given by 1 plus delta 1; and we are

guaranteed that each of these errors it must be less than or equal to the machine

precision.

 (Refer Slide Time: 12:53)

Now, we say that if we do these operations, then we are going to get these floating point

errors right. So, instead of that we say that let us see if we can get exactly the same

transform values of the end of step k; by performing the exact computations on perturbed

values of a i j. So, the idea is like this.

So, we operate on the values that a stored in the computer and we operate we go through

this operation this operation, and we end up with additional errors due to the which are

governed by this delta 1 delta 2 delta 3. So, now, we are saying we are saying that

instead of working with the instead of assuming that there are instead of assuming that

there are operating on two float no sorry. I am going back I have instead of getting

instead of performing on the exact values a i j k, what I am saying is that I am going to

operate on the some perturbed values on the perturbed values; and I am going to going to

go through the exact same transformation equations, but I will assume that I am not

introducing any additional floating point errors during the transformations right.

So, I am going to operate on some perturbed values instead of operating on the exact a i j

k a i j superscript k. I am going to operate on certain perturbed values, but I will assume

that after by I will get the same results by performing exact operations on the perturbed

values. So, the perturbations; however, only applied to the elements belonging to the

rows that are transformed by the step k that is rows with index greater than k. So,

basically I am saying that instead of operating on a i j k. I will operate on a bar i j k plus

epsilon i j k. So, now I am get I am going to get a bar i j k plus 1 is equal to a hat i j k

minus a hat i k k divided by a bar k k k times a bar k a k j a bar k these I have already be

obtained. So, they have superscript k right. So, they have already been obtained from the

previous step in the Gaussian elimination right.

So, these values are known now what I am saying is that the values that I am going to

transform right, I am going to I am not going to operate on those values themselves. I am

going to operate on those values plus some perturbed values, and I am going to assume

that my floating point operations. I am not going to introduce any errors. So, I am going

to get the exact solution by operating on these perturbed values perturbed values and I

am going to get the exact same solution. I hope that is cleared but basically the idea is

that instead of looking at the effect of the floating point operations, we say that we are

trying to get this same solution by considering perturbations in my original matrix

components.

So, I get some value after my operations right those operations, typically include floating

point operations operating on the original numbers original numbers that was there on

the matrix. So I say that instead of operating on the original numbers on the matrix, I will

operate on some original numbers plus perturbations on some perturb numbers, but

during the operations I will not introduce any floating point operation any floating point

errors, and I want to get the same values as a result of this operation. So, the idea is that

instead of we are transferring the problem to the perturbations. So, we want to find what

perturbations in my original system will give me the same errors same floating point

errors, as I would get during round off right. So, so what changes should I make to the

my original matrix elements, in order to get the same error which I would have got due

to round off.

 (Refer Slide Time: 18:15)

From this expression m bar i k is equal to a bar i k by a bar k k 1 plus delta 1. We

therefore, get epsilon i k k is equal to a bar i k k times delta 1 how do we get this well we

compare this expression this expression with sorry, this expression this expression with

this expression right, when we compare this expression with this expression we get

epsilon i k k is equal to a bar i k k times delta 1. Then we can rewrite this expression this

expression as this is just a question of substitution right we are going to substitute those

values here and we get this and finally, substituting all this in this expression we are

going to get finally.

This expression which you can see gives me an expression for the perturbation epsilon i j

k, which gives me an expression for the perturbation epsilon i j k. So, that is the basic

purpose of this exercise the basic purpose of this exercise is to try to find bounds on the

perturbation epsilon i j k, because we know that the perturbations are equivalent the end

result of the perturbations is going to be the same errors, which would have a proved if I

had the floating point errors right. So, instead of finding try to find bounds on the

floating point errors themselves, I am going to try to find bounds on the perturbations.

So, this is just I am transferring the problem transferring the problem of finding the

bounds on the perturbations, because I am saying the end result of the perturbations is

equivalent to the floating point errors in the operations.

So, we get this and then if we take bounds on both sides we get an expression like this

and this must be lesser than or equal to. So, this is a bar i j k plus one times this term

minus a bar i j k times this term. So, this has to be lesser than or equal to maximum of

this and this times this term right, because this is maximum this and this must be larger

than this minus this times this minus this times this must be lesser than the maximum of

this and this times this minus this right. So, this is lesser than that.

(Refer Slide Time: 21:08)

So, we get the same expression I have written here. So, mod of epsilon i j is lesser than

or equal to max of this times this and then we know that since delta 1 delta 2 delta 3 are

less than the machine precision u. So, these must be small numbers. So, I can do a

binomial expansion of this and if I do that I can write 1 plus delta 3 minus 1 as 1 minus

delta 3 one plus delta 2 minus 1 as 1 minus delta 2 and this is approximately equal to

delta 2 plus delta 3. Where I have ignored terms which involved 2 delta is delta 2 times

delta 3. Similarly. So, if I take bounds on that I get this is approximately equal to mod of

delta 2 plus delta 3 which is lesser than or equal to mod of delta 2 plus mod of delta 3.

And since both delta 2 and delta 3 are lesser than u this must be less than two times the

machine precision.

Similarly, the second term 1 plus 1 plus delta 2 inverse I can write it as 1 minus 1 minus

delta 2, again using binomial expansion taking into account the fact that delta two has is

very small much smaller than 1, which is going to give me approximately delta 2. So,

again I take bounds on that this going to be lesser than or equal to delta 2 and again delta

2 is lesser than the machine precision. So, that is going to be less than u.So, we finally,

get mod of epsilon i j to the power not to the power mod of epsilon i j at the k-th step is

lesser than or equal 2 max of this times 3 times u where u is the machine precision.

(Refer Slide Time: 23:12)

Let us recall this equation this equation, which was my update formula for Gaussian

elimination and which says that a bar i j k plus 1 is equal to a bar i j k plus epsilon i j k

minus this if we sum this expression for k is equal to 1 to r, where r is the minimum of i

minus 1 j i being the row index j being the column index. We are going to get sigma k

equal to one to r a bar i j k plus 1 minus sigma k equal to 1 1 to r a bar i j k is equal to e i

j, where e i j is basically I have summing this term from k equal to one to r e i j minus

sigma k equal to 1 to r m bar i k a bar k j k.

This everything is going to cancel except the r for except the term which is going to be

for k equal to r, which is going to give me a bar i j r plus 1 and the term which involves

one a bar i j 1. So, I have a bar i j r plus 1 minus a bar i j 1 the rest of the terms are going

to cancel, the rest of the terms from this first term is going to cancel the rest of the terms

from this second term. So, we are left with a bar i j r plus one minus a bar i j one, but a

bar i j 1 is going to be a y j; because that is the first that this that is the first the first step

and the first step there are no round off errors. So, a bar i j one is going to be equal to a i

j. So, we can get an expression like a i j is equal to a bar i j r plus one bringing changing

the sides right bringing this to the left hand side. So, we get a bar i j r plus one plus sigma

k equal to one to r m bar i k a bar k j k minus e i j.

(Refer Slide Time: 25:35)

For terms at or above the principal diagonal j is greater than or equal to I and since r is

equal to minimum of i minus 1 and j if j is greater than i. So, r must be equal to i minus

1, because r is minimum of i minus one in j so, r is equal to i minus 1. So, in that case a

bar i j r plus 1 is going to be a bar i j I, because r is equal to i minus 1. So, this gives me a

bar i j r plus 1 is equal to a bar i j i for terms below the principal diagonal the row index

is going to be greater than the column index i is going to be greater than j therefore,

minimum of i minus 1 j is going to be j. So, r is going to be j hence in that case a bar i j r

plus 1 is equal to a bar i j j plus 1, which we know from our Gaussian elimination is

going to be 0. So, beyond the j-th step the a bar i j is going to be 0 the terms which are

below the principal diagonal are going to be 0.

Hence we can write this previous expression this previous expression we can write it as a

i j which is equal to a i j one is equal to a bar i j i plus this term, which does not change

this is true for j greater than or equal to i and this is equal to zero plus this term when i is

greater than j. So, basically I have split it up if split this equation in to two parts one for j

greater than or equal to i and 1 for i greater than j and if we assume that m bar i i is equal

to 1, I can put this term inside the summation and change this index from k equal to one

to i minus 1 to k equal to 1 to i.

So, in that case we can write a i j is equal to sigma k equal to one to i m bar i k a bar k j k

minus e i j provided m bar i i is equal to 1 that is true, then we can write combine these

two equations together to write a i j is equal to sigma k equal to 1 to p m bar i k a bar k j

k minus a i j, where p is equal to minimum of i and j if j is greater than i then p is going

to be i when i is greater than j then p is going to be j. So, when p when j is greater than i,

I am going to recover this first equation, when i is greater than j. I am going to recover

the second equation. So, i finally get a i j is equal to sigma k equal to one to p m bar i k a

bar k j k minus e i j.

(Refer Slide Time: 28:45)

So, in the above equation we can see that only components m bar i k are needed when

they are m bar i k terms, we only involve the m bar i k terms which are below the

principal diagonal and a bar k j terms, which are above the principal diagonal we can see

because k is equal to 1 to p and p is equal to minimum of i j, here p k is the second index

and k is and k k can be as high as only as p and p is bounded by this. So, this term only

involves a term, which are at or below the principal diagonal while here this term. Since

the first index is k and k can be only as high as p and p is bounded by minimum of i j.

So, this term only involves terms which are above the principal diagonal. So, in that

because of that this equation only involves components of m bar i k at or below the

principal diagonal and components of a bar k j k at or above the principal diagonal.

Since we do not use components of m bar which are which are above the principal

diagonal and components of a bar, which are below the principal diagonal we can

assume them to be 0 in which case this expression this expression is a L U

decomposition this is the lower triangular matrix that is an upper triangular matrix. So, in

that case we are going to get, a is equal to L bar U bar minus E where E is the matrix is

components. I given by E i j let us go back to the previous slide this components i given

by E i j and i bar, what we just discussed from is made of m is components are m bar i k

and u bar has components a bar k j k.

Thus the computed matrices L bar and U bar are the exact triangular factors of the matrix

a plus e. So, LU we thought was the triangular decomposition of a right, but because of

round off errors, we are going to get L bar U bar and L bar U bar is the exact

decomposition of a right a plus E it is the exact decomposition of a plus E. So, now we

are transfer the error into a perturbation in a right. So, a the original matrix a plus some

perturbation matrix E is going to give me L bar U bar L bar U bar includes the effects of

all the floating point errors.

(Refer Slide Time: 32:07)

So, recall that we have defined e i j is the sum of all the epsilon i j k is that is when what

we defined exactly. Here when we defined E i j equal to sigma epsilon i j k and r is equal

to minimum of i minus one j. So, it we can write this as the sum of minimum i minus 1 j

quantities and we also remember that epsilon i j k is has this bound which we obtained

earlier. So, we can say that mod of e i j is lesser than or equal to three u times minimum i

minus 1 j times maximum of maximum of mod of a i j k over k basically, we are saying

that since this is bounded by that right and this is form by the sum of these epsilon i j k s;

then we get a bound on e i j which is three u times are times are minimum of i minus 1

time j, because this sum is over r and r is minimum of i minus 1 times minimum of I

minus 1 and j. So, we are taking this value which is the maximum value of r right r r is

bounded r is given by this.

So, this value times the maximum of all these sums right this is the maximum of a i j k a

i j a bar i j k plus one and that is maximum of a bar i j k over all the k s. So, we are taking

the maximum possible. So, we have a sum of sum of epsilon i j k which involve terms

like this right maximum of this and this. So, we are taking we are looking at all the sums

and we are saying that we are going to take of all the terms which comprise the sums we

are going to take the maximum value that this maximum of all those values. So, that

maximum value times i minus one is going to be an upper bound on mod of e i j.

So, that. So, that is just the absolute upper bound because we this term comprises a

number of sums. So, we are taking the largest term in that sum we are taking the largest

term in that sum and multiplying it multiplying that by the number of terms in the sum.

So, that is going to be greater than or equal to mod of e i j. So, again let me repeat we

this term comprise is a sum of a number of terms right we are taking the largest term in

that sum and multiplying it where the number of terms in that sum, and we are saying

that has to be a bound on the left hand side which is the sum of all those terms.

(Refer Slide Time: 35:25)

So, that was the bound on the left hand side let us consider, a bound on the right hand

side since the original system is of the form a x is equal to b, and the right hand side is

transformed in a it remember we recall from Gaussian elimination the right hand side is

transformed in exactly the same way as the left hand side right. So, the right hand side

because the right hand side is transformed in exactly the same way as the columns of a,

we can develop a bound on the error in the right hand side, because we are performing

operations on the right hand side every time at every step, we are operating on the left

hand side as well as in the right hand side.

So, when we when we operate on the right hand side we introduce floating point errors

on the right hand side, and these are the bounds on the similar to the errors we get on the

bounds on the errors, we get on the bounds we get on the errors in the left hand side we

can similarly get bounds on error on the right hand side in a very similar fashion, and

they have a similar form. So, mod of c i is the it is sum of the errors on the right hand

side and that is bounded by something like this which is very similar to the bound on the

error in the right hand side.

So, introducing the intermediate vector y is equal to U bar x we solve the system L bar U

bar x is equal to b plus c right now l bar u bar include the floating point errors right plus

b plus c, why do we have this c because c is because of the round off errors in b right.

So, this is the actual system that we are solving and introducing an intermediate vector y

is equal to u bar x we get L bar y is equal to b plus, and then we solve for y here we solve

for y from this equation put y on the right hand side and finally, we solve for x U bar x is

equal to y.

(Refer Slide Time: 37:40)

So, summarizing we have obtained bounds on e i j and on the right hand side c i and

these bounds have the following form. Now, it is clear that if these errors are going to be

small then these bounds this right these bounding values must be small two right. So, in

order to bound these errors these terms a bar i j k and b bar i k must be small. So, it is

very important that the pivoting strategy whatever pivoting strategy we adopt should

limit the values of mod of a i j k and b bar a bar i j k and b bar i k, but what is interesting

to note is that these bounds do not involve the multipliers m bar i k, thus the magnitude

of the multipliers has no effect on the magnitude of the round off errors during Gaussian

elimination; because these terms these terms do not involve the multipliers they only

involved coefficients, and the right hand side the approximations to coefficients on the

right hand side it do not involve the multipliers.

(Refer Slide Time: 39:04)

We have thus far obtained bounds on the round off error in the elimination step that is we

have obtained bounds on e where e is equal to L bar U bar minus a. So, L bar U bar is the

appropriation to L U L U is the exact decomposition of A. So, L bar U bar minus a is

equal to e write that e matrix and we have obtained Boundson the terms of the e matrix

each term of the e matrix is E i j. We obtained Boundson the error matrix in the in the in

the coefficient and we have also obtained errors on c bounds on c where c is the error in

the right hand side.

So, that. So, we have obtained bounds both on the coefficient matrix as well as on the

right hand side errors due to round off, we know now know that those error due to round

off cannot exceed these bounds right. So, those errors due to round off cannot exceed

these bounds we have found bounds on those errors. However the full solution of the

linear system also involves the back substation following Gaussian elimination. So, this

is the bound on the errors due to Gaussian elimination, there will be additional errors due

to back substitution which follows Gaussian elimination.

However, for most matrices that occur practice the round off error due to Gaussian due

to back substitution is negligible compared to the round off error, due to Gaussian

elimination thus the errors E and c during the elimination step limit the accuracy of the

computed solution A x equal to b. So, the most of the errors round off errors occur

during the elimination step and if we obtained bounds on those errors whatever

additional errors have proved during back substitution.

They are going to be negligibly small compared to they are still going to be bounded by

bound which we have obtained during for Gaussian elimination. So, let us look again at

those bounds mod of a i j lesser than or equal to three times machine precision U times

minimum 5 minus 1 j then maximum of a bar i j k, overall the iterations k similarly mod

of c i less than or equal to three times machine precision u times I minus 1 times

maximum of b bar i k over all the iterations k these are basically. What are known as

posteriori bounds why because we cannot predict those bound before, we have actually

computed these values right because these values are the maximum over all the all the

steps in the Gaussian elimination.

So, unless we have actually compute unless we have actually gone through the steps of

the Gaussian elimination we do not know what these max values are we do not know

what max k a bar I j k is or max k b bar i k k is. So, these are posteriori bounds posteriori

bounds and these have to be these can only be obtained after we have perform the

Gaussian elimination. However it is desirable to obtained a priori bounds that is we want

to know what my error will be I want to know what my bounds in my what the bounds in

my error will be before I have actually started doing the computations right. So, a priori

bounds are always more useful than posteriori bounds.

So, let us see how we can n obtained a priori bounds on the error in Gaussian elimination

it has been shown that a priori bounds can only be obtained if mod of m bar I won not go

into the derivation for that, but let us take it for granted it can be there are references and

the references I have referred to in this course you can find discussions on this. So, it can

be shown that if mod of m bar i k k is always lesser than or equal to 1 then we can

obtained a priori bounds. But when is mod of m bar i k k will going to less than or equal

to one when are those multipliers going to be less than or equal to one they are going to

be less than or equal to one. Only when we have performed pivoting when at least we

have performed partial pivoting right at every step, we choose the largest element in a

column as the pivot only then can be assured that the multipliers, that we are going to use

are always going to be lesser than or equal to one and in that case we can obtained a

priori bounds.

(Refer Slide Time: 44:17)

So, in the in case we perform partial pivoting then we can show that mod of e i j now be

it changes. So, it the bound changes the bound becomes narrow instead of this lesser than

or equal three u times this, now we are going to get this lesser than or equal two u times

minimum of i minus one j, but most interesting is this part. Let's look at what this was

this was maximum of a bar i j k over all the steps k ah right. So, now, instead of that I

have maximum of a bar i j k over i j k. So, not only is the maximum over the steps k it is

over all the elements of the matrix right it is over all the elements of the matrix i j k.

So, now I am saying that mod of e i j is lesser than or equal to the largest value in the

coefficient matrix not only over the steps, but over each element not it is not only

concerned with each element it is it is the maximum of over all the elements in that

matrix it is a maximum of i j as well as k. So, it is not only a maximum of over the steps,

it is also a maximum over the row and column indices. So, basically it is the maximum

absolute maximum element in that matrix over all the steps. It is the maximum element

in that matrix over all the steps. So, the last factor on the right is computed as maximum

of i j mod of a bar i j k. So, at each step k we find the largest element in the matrix and

then we find the largest over all the steps, so maximum of k over i and j. So, if we can

bound this computed value in terms of some a-priori values then we can obtain an a-

priori bound on the round off error.

So, if we can we can bound this in terms of some a-priori values in terms of some values

which are known which are known before I do my Gaussian elimination typically some

values, which are part of my original matrix a right using some components of my

original matrix a if I can obtain a bound on this I am going to get in a-priori bound on my

error due to Gaussian elimination to do, that is to do that let us denote g n is equal to

maximum of i j k mod of a bar i j k divided of divided by maximum of i j mod of a i j.

(Refer Slide Time: 47:22)

If we do that we can write this expression we can re write this expression as mod of e

mod of e lesser than or equal two u two u remains the same maximum of a bar i j k i j k. I

am going to replace this by g n times maximum of i j mod of a i j. So, that is going to be

g n times maximum of i j i j and what is this matrix this matrix is nothing, but minimum

of i minus 1 j. So, at for each element I have computed I have obtained this element by

taking minimum of the row index minus one and the column index. So, the row index

here is one the column index is one. So, I have one minus one is 0 0 and 1 minimum of 0

and 1. So, that is going to be 0. Similarly, I have computed all the rest of the terms in this

matrix right which is nothing, but minimum of i minus 1 and j elements of the matrix on

the right hand side or each given by minimum of i minus 1 j.

Hence the matrix norm of the maximum norm of the matrix is given by the sum of the

elements in the last row recall what is the maximum norm it is the sum of the sum of the

elements in each row maximum of that right. So, I have taken. So, that. So, that the my

last row is going to contribute that and that is going to be 1 plus 2 plus 3 plus n minus 1

plus n minus 1. I have group these terms together you can see these are the sum of the

first n natural numbers which is given by half n n plus one. So, this is the half n n plus

one minus one. So, we get mod of E infinity why is why have we taken e infinity

because we have computed the infinite norm of this matrix right.

(Refer Slide Time: 49:33)

So, mod of e infinity is lesser than or equal to 2 u g n times max i j over mod of i j this

term remains the same and then the infinite norm of this matrix infinite norm of this

matrix, which we just calculated to be half of n square plus half of n minus 1 by slightly

refining the estimate of E, which I am not going to go into again it is slight change

actually we can show that mod of e infinity is lesser than or equal to 2 u g n max i j mod

of i j times half of n square.

So, it is actually here we have obtained half of n square plus half of n minus 1 actually it

is less than half of n square this is a sharper bound right it can be shown that we can

write it like this and then 2 2 cancels out we get n square g n u maximum of i j mod of i a

i j, but maximum of a mod of a i j i j is lesser than or equal the infinite norm of my

original coefficient matrix why because the infinite norm is defined as sum of over all

the columns sum of sum of each row sigma j equal to one to n mod of a i j and then the

maximum of that right. So, maximum of i j mod of a i j is going to be bounded by the

infinite norm of a right.

So, I can replace this replace this on the right hand side by the infinite norm of a because

this is greater than that. So, I finally, get this mod of e infinity is lesser than or equal to n

square g n u times a infinite norm of a, but we still have this factor g n right what is this

factor g n.

(Refer Slide Time: 51:38)

Let's recall g n we define to be this we define this factor g n to be this and it can be it has

been it can by just by slowing a large number of problems finding out the typical values

for g n, it has been shown, that for partial pivoting g n is lesser than or equal to 2 to the

power n minus 1, where n is the dimension of the matrix and for complete pivoting g n is

lesser than or equal to 1 point 8 to the power point 25 l n, which gives a narrower bound,

but even if we do just partial pivoting this bound is sufficiently narrow because g n rarely

exceeds eight right.

So, the bound on e is satisfactory, because g n is usually quite small lg n rarely exceeds 8

g n rarely exceeds 8 so in that case, we have we have obtained bounds on e bar on E L L

bar and U bar are the computed triangular factors with partial or complete pivoting why

do we say partial or completing pivoting, because we have try to find a a-priori bound a-

priori bound right, and we have mentioned that we can only obtain an a-priori bound and

all those multipliers are less than 1. So, partial pivoting is necessary so this bound is

satisfactory unless the ratio g n is large.

(Refer Slide Time: 53:38)

So, that was. So, we have found a bound on the Gaussian error in Gaussian elimination

due to round off some people have often try to improve the solution improve the results

of Gaussian elimination they often try scaling, basically they either scale the coefficient

matrix or they scale the right hand side. And they assumed they sometimes think that

before because their doing scaling they somehow going to get better solutions they are

going to get smaller errors, but it has been seen that scaling the unknowns or the

coefficient matrix has no effect on the accuracy of the computed solution except by

affecting the choice of the pivots. So, it can improve the stability of the solution because

pivot is going to the size of the pivot is going to determine the stability of the solution.

So, if the pivots are large we are going to get more stable solution the pivots are small

the error this solution is going to be less table, but it is not going to effect the accuracy of

the solution the accuracy of the solution is not going to be effected by scaling.

(Refer Slide Time: 54:55)

So, that was that was discussion on the error estimate due to round off during Gaussian

elimination. Next from next lecture onwards we are going to talk about iterative methods

for solving linear systems, but before we talk about iterative methods for instance Gauss

Seidel iterations or Jacobi iterations. We will briefly talk about a simple technique to

improve the solution of direct methods improve the solution of obtain using direct

methods such as Gaussian elimination by some iterations. So, we solve the problem

using Gaussian elimination, but then we can improve the solution by doing some simple

iterations. So, we will talk about that first before going into directly into iterative

methods for solving Gaussian for solving linear systems.

And we will find that these iterative methods are particularly suited for problems which

have coefficient matrix which are very spars right which are very spars because Gaussian

elimination, we know one of the problem with Gaussian elimination is that it destroys

sparseness of this system right. So, so we want if the matrix is really spars we want to

use iterative methods because those methods preserve this sparseness of this system. So,

we can take advantage of this sparseness in reducing the number of mathematic

mathematical operations as well as the storage required.

Thank you.

