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Iterative Methods-II 
 

Continue our lecture on lecture series on Numerical Methods in Civil Engineering, we 

are going to continue our discussion on Iterative Methods for solving linear systems. 
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Last time, we looked at iterative methods in general and specifically we looked at, what 

is probably the simplest iterative method for solving linear systems, Jacobi's method. 

And we obtained convergence criteria for the Jacobi's method, we figured out under what 

conditions the repeated iterations using a constant coefficient matrix leads to 

convergence solutions. We also talked about Gauss Seidel method, which is a variation 

of the Jacobi method, where instead of continuing with the old iterates for entirely new 

cycle, we update the new values of the iterates, as they occurred during the solution. 

So, we talked about Gauss Seidel, this time we are going to talk about convergence of 

Gauss Seidel method. Recall, to examine the convergence of iterative methods, it is 



convenient to write the update algorithm in the generalized form of a stationary iterative 

method. Where, x k plus 1, which is the solution at the k plus 1th iteration is equal to B 

some coefficient matrix, which depends on the iteration algorithm times x k, where x k is 

the solution from the previous iteration plus a constant vector c. 

And we continue this iteration for k equal to 0, 1, 2 and so on, until we reach 

convergence when x k plus 1 is equal to x k within a certain tolerance and both of them 

can be taken to be or both of them are close to the true solution within certain error 

norms. Recall, the Gauss Seidel method in this form, in the form x k plus 1 is equal to B 

x k plus C can be written, if we represent the matrix B by L plus U, where L plus U are 

lower and upper triangular matrices, which are formed from a original coefficient matrix 

A. 

Each of them recall as 0 on it is diagonals and D is the diagonal matrix, which we 

defined last time. So, x k plus 1 is equal to minus L plus U x k plus D inverse b that is, if 

we write the Gauss Seidel method in the generalized form of a stationary iterative 

method. Hence, B for Gauss Seidel method is minus I plus L inverse U, this also we have 

seen last time. 
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Also we recall that, we found that, a necessary and sufficient condition for convergence 

of a stationary iterative method is that, the spectral radius of B be less than 1 that is, the 

largest Eigen value of B must have now magnitude less than 1. In that case, that is both a 

necessary as well as a sufficient condition for the convergence of a stationary iterative 

method. 

However, it is not easy to know a priori the spectral radius of B, so it is not always 

possible to before doing the iterations to dissolve the Eigen value problem and find out 

the largest Eigen value of B, that is simply too cumbersome and too troublesome and too 

expensive. Hence, we would like to know, a come up with some alternative criteria that 

we can use to determine if our stationary iterative method is going to converge a criteria, 

which does not involve doing a spectral analysis and figuring out the Eigen values of B. 

For Jacobi's method, we found that, if the matrix B is diagonally dominant, that is a 

sufficient condition for convergence. That is a sufficient condition, but it is not necessary 

condition, it is a sufficient condition for convergence. 
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So, we would like to find something similar for Gauss Seidel method, obtain a 

convergence criteria which is relatively easy to use and which does not required finding 

the largest Eigen value of B. We recall that, for any consistent matrix vector norm, for 



instance the infinite norm we have then, the infinite norm of a matrix is equal to that 

matrix operating on a vector, that gives me a vector, for instance, if I want to find the 

infinite norm of B GS, where GS represents the Gauss Seidel, B for Gauss Seidel. 

We can find that out, we can find the infinite norm by taking the product of B GS, the 

coefficient B matrix for Gauss Seidel with any arbitrary vector x such that, the norm of x 

is not equal to 0 that is, x is not the zero vector. So, B GS times product with x, we find 

the norm of that, divided by the norm of x and whatever value if we max, maximise that, 

that is going to be my infinite norms for the matrix. This is our definition of a consistent 

norm, which we talked about earlier on. 

Let us denote B GS x is equal to y, in that case the infinite norm of B GS is equal to 

maximum of y, infinite norm divided by infinite norm of x and maximise it, that gives 

me the infinite norm of B GS. Let us suppose that, the infinite norm of y, which is by 

definition, the maximum of the absolute of all the components, we calculate the absolute 

value of the components and take the maximum of that over all the components, that by 

definition is the infinite norm of y. 

And let us suppose in that y vector, the k th entry, the k th component gives me the norm 

of y infinity. So, this is basically the largest entry in the y vector, let us also recall that, 

the Gauss Seidel's update formula y is equal to minus L y minus U x plus D inverse c and 

let us neglect the constant term D inverse c for the time being. We consider the equation 

y is equal to minus L y minus U x, why do we ignore the constant term D inverse c, we 

are interested in the convergence. And when so interested in the convergence, we are 

interested in the convergence of y, so the constant term does not play big role in the 

convergence. 
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Let us consider in particular the k th equation in this system, this system I mean, this 

system, let us consider this simplified system, where we have got rid of the constant 

vector D inverse c. Because, we said that is not important for convergence for studying 

the convergence of this method. And we say that, we consider this y is equal to minus L 

y minus U x and we know that, since the infinite norm of y is given by the k th term in y. 

So, basically, we find out the k th term on their both on left hand side and the right hand 

side and the k th term is equal to sigma j equal to 1 to k minus 1 L k j y j minus U k j x j. 

So, this is the lower triangular part, this is the upper triangular part and we can see this is 

L k and U k. Because, we are only considering the k th equation in the system of 

equations, y k is equal to the k th row of this matrix times the y vector, the k th row of 

the u matrix times the x vector. So, we can write that like that, just taking the norm on 

both sides and this is going to be less than this plus ((Refer Time: 09:52)) this, again this 

minus this is going to be less than this, norm of this plus norm of this. 

Recall, we have done this before and this again L k j we can write as a k j by a k k by 

definition, because a lower triangular matrix is just the original matrix scaled by the D 

inverse, D inverse times the original matrix. The lower triangular part of the original 

matrix scaled by D inverse that is, my L, so that is this term and this is my upper 



triangular matrix, which is basically the U, which is basically the upper triangular part of 

a scaled by D inverse, that is why we have this a k k. 

So, this is less than that and this is equal to this, while that is equal to that, since we 

know that, mod of y k is greater than y j, for all j not equal to k, because we have 

assumed that, y k is the term in y, the entry in y which has the largest absolute value. So, 

we can write mod of y infinity is lesser than or equal to this term and now, I am going to 

replace y j by mod of y k. So, since this is y j, but since this is always greater than every j 

except k, if I replace this by mod of y k, the right hand side is going to be greater than the 

this this. 

Similarly, instead of x j, if I replace it by the maximum component of x, instead of 

summing it over all the components, I submit all the time with the maximum component 

of x obviously, that is an upper bound on this. So, if I replace that by that, so but this is 

nothing but y infinity, that is nothing but, x infinity. 
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So, we can write this as, if we write this as x k and write this as r k, we can write this 

mod of y infinity is lesser than or equal to s k times mod of y infinity plus r k times mod 

of x infinity So, we get again bringing by mod of y infinity to the left hand side, the 



infinite norm of y we have bring it, collect it bring it to the left hand side, we can write 

this as mod of y infinity by mod of x infinity is lesser than or equal to r k divided by 1 

minus s k. 

So, 1 minus s k mod of y infinite norm of y is lesser than or equal to r k times infinite 

norm of x. So, infinite norm of y divided by infinite norm of x is lesser than or equal to r 

k divided by 1 minus s k. And recall that, we said that, infinite norm of B GS is equal to 

maximum of y infinity by x infinity. So, we can write B GS is lesser than or equal to 

maximum of r i by 1 minus s i, because this is equal to that and we saw that, this was 

maximum over this, so maximum of r i by 1 minus s i, i is equal to 1 to n. 

Since maximum of r i obviously, because this maximum of r i 1 minus s i must be greater 

than any value r k 1 minus s k, so if we replace this on the right and replace this with 

maximum of that, this has got to be less than this. But, from the definition of r i and s i, it 

can be shown that, for diagonally dominant matrices r i plus s i is less than 1, why is that 

r i plus s i, we denoted r i to be this and we denoted r k to be this and s k to be this. 
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So, if we write r i plus s i that is, so just replacing k with i, so that is this plus this, which 

is equal to, you can see the sum is over j is equal to 1 to k minus 1 and here the sum is 



over k plus 1 to n, so the sum is actually over j is equal to 1 to n, other than when j is not 

equal to i. So, this is equal to mod of a i j by mod of a i i, which is always less than 1 if 

the matrix is diagonally dominant, that is the definition of diagonally dominance. The 

sum of the absolute values of the half diagonal terms is going to be less than the absolute 

value of the diagonal term that is, when matrix is strictly diagonally dominant. 

So, if the matrix is strictly diagonally dominant, r i plus s i will be less than 1, which 

means that, B GS must be less than 1. Hence, again similar to Jacobi's method, we see 

that Gauss Seidel method is convergent when the B matrix is diagonally dominant, thus 

both Gauss Seidel and Jacobi's method are bound to converge to the true solution with 

increase in the number of iterations if the b matrix is diagonally dominant. If my B 

matrix, which in case of Gauss Seidel is given by this, which for Gauss Seidel is given 

by this. If this matrix is diagonally dominant then, I am guaranteed that, my Gauss Seidel 

iteration is going to converge after a certain number of iterations. 
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So, that is convergence, however what is important is also the rate of convergence, 

something might converge, but it may turn out that, it converges so slowly, where it 

might be practically useless. So, something converges after 1 million iterations that is not 

going to be useful for any practical computational purposes. So, we are also interested 



not only in the fact that, the iterative method converges, it must converges in a 

reasonable number of iterations. 

Therefore, the rate of convergence is also very important and we recall that, the rate of 

convergence depends on this factor R, which is equal to minus log of rho B, which we 

call the asymptotic rate of convergence, rho B being the spectral radius of B. The rate of 

convergence depends on, how fast the error at iteration k, which I denote as mod of x k 

minus x goes to 0 as k, the number of iterations increases. So, suppose at iteration k, I 

had certain error which is given by this, I would like to know the rate of... 

If it convergence fast then, it would converge to it, the error would go down fast as the 

number of iterations increases. To get an estimate of the error in x k, we use the 

following relation, x k minus x is equal to, recall that x k is equal to B x k minus 1 plus c 

that is, standard for a stationary iterative method. So, we can write x k minus x as minus 

B x k minus x k minus 1 plus B x k minus x, basically minus B x k plus B x k cancels 

out, we have B x k minus 1 and minus B x. 

And recall that, x is equal to B x plus c, so we are recovering this equations, so basically 

we are writing this equation in a slightly different form, this equation I am rewriting it in 

a slightly different form, why is x is equal to B x plus c. Because, at convergence after it 

has converged, x k plus 1 is almost equal to x k minus 1. So, x k is equal to B x plus c, 

where x is the true solution, x is the converged solution, once it has converged, x is equal 

to B x plus c, os we use this equation to get an estimate for the error. 
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Let us see, what we do if mod of B is equal to beta less than 1, so if the infinite norm of 

B is suppose beta and suppose it is less than 1, which we know is necessary for 

convergence. We get mod of x k minus x, taking the norm on both sides, norm of x k 

minus x is lesser than or equal to norm of B norm of x k minus x k minus 1 plus norm of 

B x k minus x. So, just taking the norm of both sides and using the fact that, norm of this 

operating on that is lesser than or equal to norm of this times the norm of that. 

And using the fact that, norm of B is equal to beta, we get beta times norm of x k minus 

x k minus 1 plus beta times norm of x k minus x. Again bringing this term to the left 

hand side, we have 1 minus beta norm of x k minus x is equal to beta times norm of x k 

minus x k minus 1. Therefore, norm of x k minus x is lesser than or equal to beta by 1 

minus beta norm of x k minus x k minus 1. We will see that, only when beta is lesser 

than or equal to 5, this term is going to be less than 1, this term is going to be less than 1, 

beta by 1 minus beta is going to be less than 1 only if beta is lesser than or equal to half. 

Then, we can be assured that means, this term is less than 1 so that means, that the iterate 

x k is sufficiently close to the true solution. That is, it is difference from the true solution, 

norm of x k minus x, the difference of x k with the true solution is less than or equal to 

the magnitude of the last correction. This is the last correction, x k minus x k minus 1, if 



this factor is less than 1 that means, this difference is less than to the magnitude of the 

last correction. 

So, in that case, once we reach, once we satisfy that criteria, we can stop our iteration, 

we say that, our solution x k has almost converged, because the change x k is closer to 

the true solution than the change from the last iteration value, so that is when it has 

converged. 
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The expression star however, does not take into account in round off error, so we are 

assuming that, everything is being done in infinite precision when we write that equation, 

so does not take into account rounding error. Thus, even when the structure of the 

stationary iterative method indicates that, the error at iteration k satisfies this bound 

((Refer Time: 22:38)) even when we think that it satisfied this bound, round off errors in 

the arithmetic operations of the algorithm may lead to violation of the bound. Next we 

talk about slight modification to the Gauss Seidel method, which substantially improves 

the convergence of Gauss Seidel algorithm. 
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That is, recall that the Gauss Seidel algorithm is given by x i k plus 1 is equal to this, 

where this is the lower triangular path comprising the values of the elements, which I 

have already been found from the new iteration. The values of the elements, which I 

have already been found if continuing iteration, this involves the values, which I using 

from the old iteration and this is the right hand side. So, we recall this is the Gauss Seidel 

algorithm then, we denote x i k plus 1 is equal to x i k plus r i k for the i th equation. 

In that case, we can write x i k plus 1 is equal to, this part remains the same, but this part 

instead of summing from j equal to i plus 1 to n, now I am going to sum from j is equal 

to i to n. So, I am adding an extra term here, what is that extra term, the term for j is 

equal to i, which is nothing but, a i i x i k. A i i x i k divided by a i i that means, I am 

adding a minus x i k and I am compensating for that by adding another x i k. So, I 

rewrite this like this and since we have denoted x i k plus 1 is equal to x i k plus r i k, so 

this whole thing becomes my r i k. 
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If the iteration method is written as x i, so recall what is Gauss Seidel, Gauss Seidel says 

that, x i k plus 1 is equal to x i k plus r i k. So now, we are saying that, we are not going 

to use full Gauss Seidel, we are going to use x i k plus 1 is equal to x i k plus omega r i k, 

omega is a scalar, some scalar times r i k. So, we are just changing the Gauss Seidel 

algorithm, instead of using the full r i k, which we recover when omega is equal to 1, we 

are going to use some fraction, either we will see what are the liable values of omega. 

But, for the time being, let us suppose that, we are multiplying this by scalar times r i k, 

instead of just taking r i k then, we have what is known as the successive over relaxation 

method or the SOR method. And the factor omega is known as the relaxation parameter 

and it is chosen to maximize the rate of convergence of the algorithm. So, pure Gauss 

Seidel, x i k plus 1 is equal to x i k plus r i k, SOR method instead of taking r i k, we are 

multiplying r i k, we are scaling the r i ks with the scalar omega. And we are going to 

choose this scalar omega so that, we get maximum rate of convergence of the algorithm. 
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Recall again, that for Gauss Seidel, our iteration matrix B is given by B GS is equal to 

minus i plus L inverse U, which we have seen several times. For the SOR method, we get 

a modified B matrix, B omega which we denote by B omega, which is equal to minus i 

plus omega L inverse 1 minus omega i minus omega U. I have not actually shown this, 

but I am asking you to take this for granted, it can be shown quite easily that, instead of 

taking of x i k plus 1 is equal to x i k plus r i k, I replace x i k plus 1 is equal to x i k plus 

the omega r i k then, my B matrix changes from this matrix to this matrix. 

So, if we use the SOR method, my B matrix changes from this to this, from this if we 

take determinant of both sides, what do we have, determinant of B omega is equal to 

determinant of this times determinant of that and recall the determinant of A inverse is 

equal to 1 by determinant of A. 
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So, we are going to use that determinant of B inverse, therefore is equal to 1 by 

determinant of this part and trans the determinant of 1 minus omega I minus omega U, 

which is this part. But, recall that the determinant of a triangular matrix, which we have 

seen several times before, is given by the product of the diagonal terms, product of the 

terms on the principle diagonal. And by definition, we have defined L and U to have 0s 

on their principle diagonal. 

So obviously, the determinant of both L and U are 0, hence the diagonal elements of I 

plus omega L, this matrix, this term is not going to contribute anything. So, on the 

diagonal, are each equal to 1, so this is going to be a triangular matrix, because this is a 

lower triangular matrix. To this, we are adding a the identity matrix, so the result is going 

to remain a lower triangular matrix. And for a lower triangular matrix, the determinant is 

the product of the diagonal terms and since the diagonal terms of L are 0, the diagonal 

terms of I plus omega L are nothing but, 1. 

So, this determinant is going to be 1 and the diagonal elements of 1 minus omega I 

minus omega U, similarly again U has got 0s on its diagonal. So, on it is diagonal of this 

entire matrix, we have 1 minus omega, each diagonal term is equal to 1 minus omega. 

So, this determinant is going to be 1 minus omega to the power n, where n is the size of 



the matrix. So, this gives me determinant of B omega is equal to 1 minus omega n, but 

let us go back, take a step back and recall that, determinant of a matrix is equal to the 

product of it is Eigen values. 
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We have seen that before, therefore what do we have, we have determinant of B omega, 

which is equal to 1 minus omega to the power n must be equal to lambda 1 lambda 2 

through lambda n, where lambda 1 lambda 2 through lambda n are the Eigen values of B 

omega. Therefore, the maximum Eigen value must be greater than or equal to 1 minus 

omega why, because this product of all these Eigen values is equal to 1 minus omega to 

the power n. 

Therefore, the maximum value must be greater than or equal to 1 minus omega, I think a 

minute about it that should be clear, this is the product of all the Eigen values is this. So, 

it is clear that, it is maximum value must be greater than the n th root of this, so 

maximum lambda i must be greater than or equal to mod of 1 minus omega. And recall 

also that, for convergence what is our requirement, the necessary and sufficient condition 

for convergence is that, the maximum Eigen value of B has to be less than 1. 

So, maximum lambda i over i must be lesser than or equal to 1, we therefore have this 



condition, maximum lambda over i is greater than or equal to 1. But, this is again greater 

than or equal to 1 minus omega, which mod of 1 minus omega, which implies mod of 1 

minus omega must be lesser than or equal to 1 which means that, omega must lie 

between 0 and 2. That is what do we see that, the SOR method, the Successive Over 

Relaxation method is only going to converge and omega lies between 0 and 2. 

So, this value of omega, we cannot choose any arbitrary value of omega and hope that, 

we are going to converge. Only if we choose omega equal lying between 0 and 2, are we 

going to get convergence and it can be shown that, this the coefficient matrix A is 

symmetric and positive definite then, the SOR method always convergence when omega 

is bias between 0 and 2, so it is a necessary as well as a sufficient condition. 
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So, that was our discussion about the Gauss Seidel method and the variation of the Gauss 

Seidel method. And before moving on to something else, this is a good time to talk about 

certain linear systems, which are also amenable to iterative solutions. For instance, 

systems you may specifically that we want to talk about systems, which are over 

determined, where we have number of equations. The number of equations is more than 

the number of unknowns, which is an over determined system. 



For instance, that means, basically we are considering a system A x is equal to b such 

that, the number of rows of A m is greater than the number of columns n. An over 

determined linear system may occur during experimental readings when there are more 

measurements than the number of unknowns. If we are trying to find some values x and 

we are setting certain parameters, which are governed by the entries in A and we are 

looking at certain results. 

And from those results and those parameters, we want to find out the values of our 

unknown variables x, we perform a large number of experiments, more experiments than 

there are unknowns. So, in that case, we come up with an over determined system and 

over determined systems do not have unique solutions, you can understand, you have 

more equations than unknowns. So, there are no unique solutions and which is in that 

case, it becomes necessary to find the best solution. 

Best solution means, something which best fits the data, suppose we do a whole number 

of experiments and we have a lot of parameters, we vary a lot of parameters and we find 

the lot of results. But, our independent variables, the number of independent variables 

are less than the number of reading’s that we have taken. So, we want to find out, what 

values of the independent variables, what are the values of independent variables, which 

best fit are experimental data, which best fit our values b, which we have obtained as a 

consequent to our experiment. 

So, it is necessary to find the solution that best fits the data, so these are suppose, our 

experimental readings and A represents the parameters we have varied and vary the 

parameters, we have found our experimental results. And now, we are interested in 

finding the independent values of the independent variables, which best fit our 

experimental results be. So, basically we are interested in minimizing the residual, 

residual we define as b minus A x. So, again this becomes an iteration, it can be solved 

iteratively, we try with successive values of x, find out what is the residual and continue 

iterating till you get a relatively small or acceptable value of the acceptably small value 

of the residual. 
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But, it turns out that, instead of doing that, if we try to minimize the L 2 norm of the 

residual, we can come up with the more systematic solution. So, basically we find the 

norm of the residual in the L 2 sense, basically we take the r dotted with r, we find the 

scalar and take the square root of that, which gives me that two norm. And then, if we try 

to find the value of x, which minimizes the value of the residual, we get what is known 

as the least squares solution. 

We can see why it is called lease squares, it is the value of x which minimizes the square 

root of the inner product of r with r. The lease squares solution is such that, the resultant 

residual is orthogonal to the vector space spanned by the columns of the coefficient 

matrix. Basically, A transpose r is equal to 0, we call we defined r is equal to b minus A 

x, if we take the projection on A, A transpose b minus A x means, we are taking the 

projection of this vector b minus A x on the space, that is spanned by the columns of A. 

That linear space which is spanned by the columns of A, which has got basis vectors, 

which are given by the each individual column of A. If we take the projection of b minus 

A x on that space, which is spanned by the columns of A then, we get 0. So, basically the 

residual has zero component in the space that is spanned by the columns of A, so it is 

orthogonal to the space that is, to the vector space that is spanned by the columns of the 



coefficient matrix A. 

If the above condition is satisfied, we can show that, for any vector y, which is not equal 

to x, x being the vector which minimizes the residual. For any vector y, which is not 

equal to x, the residual which we now denote by r y, which is b minus A y instead of A x. 

Y is different from x, x minimizes the residual that, in that case, b minus A y is always 

going to be greater than b minus A x. So, if we find x such that, x satisfies this condition 

that, any vector y will give me a larger residual or if this is sort of obvious. Because, we 

are finding x, which minimizes the residual, so any vector y is going to give me a larger 

residual. 
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That is intuitively clear that, it can be proved quite easily also, so just let us go through 

the proof ones, r y is equal to, let us recall how we defined r y, r y is equal to b minus A 

y. So, r y is equal to b minus, instead of writing b minus A y, I write it as b minus A x 

plus A x minus A y, but this is equal to r x. My residual for my lease squares solution x, b 

minus A x is equal to r x plus A x minus y, I take dot product in a product on both sides. 

So, r y dotted with r y is equal to r x dotted with r x plus r x dotted with this, plus A x 

minus y dotted with that, plus A x minus y dotted with A x minus y, where A x minus y I 



am treating it as a vector. A matrix operating on a vector after all gives me always a 

vector, so this is a vector dotted with that. So, this is nothing but that, this is we can write 

r x dotted with A x minus y as A transpose r x dotted with x minus y. Similarly, A x 

minus y, I can write it x minus y dotted with A transpose r x, you can verify with this is 

always true, this is our transpose is defined. 

The mathematical definition of transpose is like this, so this you can verify and this again 

we can write, again we do the same trick, we bring x minus y A transpose A x minus y. 

So, these are identical equal, but let us look at this, A transpose r x is equal to 0 by 

definition why, because that is what we have here, that is exactly what we have here. So, 

this term goes to 0, this term goes to 0, because A transpose r x goes to 0 and we are left 

with r x dotted with r x plus x minus y A transpose A x minus y. 

And this is then, we rewrite this as the square of the norm of r y is equal to the square of 

the norm of r x term and then, we again treat this as a vector x minus y A transpose A x 

minus y, I can write as A x minus y dotted with A x minus y. So, it is as if I am taking the 

dot product in a product of a vector A x minus y and that I can write as A x minus y 

whole square. Since this is not going to be 0 for x not equal to y then, we can say that, r y 

square is always going to be greater than r x square. Because, this term is not going to be 

0, this is something intuitive, but this is just a proof for that. 



(Refer Slide Time 42:15) 

 

Recall that, the lease squares solution yields a residual that is orthogonal to the space 

spanned by the columns of A. So, the residual b minus A x is orthogonal to the space to 

the vector space spanned by the columns of A. So, I consider each column of A, they are 

linearly independent and they form a basis for the space. Suppose, a dimension of A is n 

by n, so they form a basis for the vector space of dimension n and R the residual is 

nothing but, b minus A x, it is we have taken the projection on to the space spanned by 

the columns of A. 

We have taken the projection of b onto the space that is, spanned by the columns of A 

and whatever is left is the residual. Thus, the lease squares procedure splits b into two 

parts A x and r, with A x by definition belonging to the space R A, why does A x belong 

by definition to the space R A. Because, after all what is A x, A x is nothing but, a linear 

combination of the columns of A. If you just write it out, if you expand it, A x is nothing 

but, the column 1 of A times x 1 plus column 2 of A times x 2 and so on and so forth. 

So, A x is nothing but, a linear combination of the columns of A and therefore, it must 

belong to the space R A, which is spanned by the columns of A. And then, we have r, 

which is orthogonal to the space, from this ((Refer Time: 44:06)) expression it is clear 

that, the lease square solution satisfy, this satisfies this criterion A transpose A x is equal 



to A transpose b. Just expanding this out, A transpose b is equal to A transpose A x, this is 

equal to 0, so A transpose b is equal to A transpose A x, so that is what we have written 

out here. 

And therefore, we can get the lease square solution by actually solving this system, if it 

is at all solvable. If this system is solvable, so what will make this system solvable, if this 

matrix is invertible, if A transpose A is non singular, we can find the lease square solution 

by solving this system. 
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Then, the n components of x can be found from solving that system, A transpose A, 

which we just looked at only A transpose A x is equal to A transpose b. It can be shown 

that, A transpose A is non singular only if, A has full rank meaning that, if A is non 

singular then, it only then will A transpose A b non singular why is that. If A has full rank 

then, for any x not equal to 0 implies that, A x cannot be equal to 0. Because, A x is equal 

to 0 is going to give me x not equal to 0, only when A is singular. 

So, if A has full rank, if A is non singular when x not equal to 0 implies, A x is not equal 

to 0, hence x not equal to 0 implies, norm of A x square. Since A x is not equal to 0, norm 

of A x square must be greater than 0 and norm of A x square if I think of this as a vector, 



it is nothing but, that vector transpose multiplied by itself. So, x transpose A x, which I 

can write as x transpose A transpose A x must be greater than 0. What does this mean, 

that means that, if A is non singular A transpose A is positive definite, because this is the 

criteria for positive definiteness. 

What is the criteria for positive definiteness, any vector x transpose times the product 

with the matrix times that vector product with that same vector is going to be greater 

than 0, so this means that, A transpose A is positive definite, hence non singular. Thus, 

when A has full rank, the lease squares solution is unique and is given by x is equal to A 

transpose A inverse, just by inverting that matrix, just by inverting that matrix we can 

find x A transpose A inverse A transpose b. 
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However, when A does not have full rank, the multiple least squares solution of x when 

then, we cannot solve that equation, A transpose A is becoming singular. When A 

transpose A does not, A does not have full rank means, A transpose A is singular then, we 

will going to have non unique least square solutions. However, you must keep in mind, 

all of these solutions must satisfy the minimum residual criteria, and since, the 

orthogonal projection of b onto R A is unique, they all going to give the same residual 

vector r. 



What is the residual vector r, again it is b, after we take the projection of b onto the space 

that is spanned by A, whatever is left is the residual vector r. Since the vector b is known, 

the orthogonal projection of b onto R A is also known, the residual vector is also going to 

be the same. So, respective of the fact that, we have non unique x, large number of least 

square solution x, which satisfies lease square criteria, they are all going to get the same 

residual vector r. 
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When A transpose A is singular or ill conditioned, computation of the least square 

solution becomes complicated, you can see that, becomes harder to invert this matrix. If 

A transpose A is ill conditioned or is near singular, it becomes hard to invert that matrix 

and the computation of the least squares solution becomes complicated. An alternative 

method consists of the decomposition of A into the product of an orthogonal matrix Q 

and upper triangular matrix R. This decomposition is known as QR decomposition, it is 

very important in numerical analysis and it is governed by the following theorem. 
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Let A be a m by n matrix with m greater than or equal to n, recall we are talking about 

over determined systems currently, so m can be greater than or equal to n. And let us 

suppose for the timing, that A is non singular that, it is columns are linearly independent, 

so it has got full rank and it is non singular. Then, there exists a unique m by n 

orthogonal matrix Q, orthogonal matrix meaning, each columns is orthogonal with every 

other column, each column if I take a dot with every other column, it gives me 0. 

So, each column is orthogonal, orthogonal matrix Q with Q transpose Q is equal to a 

diagonal matrix and such that, each term on the diagonal is greater than 0. So, what this 

theorem says that, if A is a non singular matrix or size m by n, we can always split it up 

into a product of an orthogonal matrix Q and an upper triangular matrix R. A unique 

upper triangular matrix R, which has got 1 on all it is diagonal terms and this 

decomposition is known as the QR decomposition. 

QR decomposition exists with a state of properties only when A has got full rank, thus it 

is directly applicable if A is non singular, but A transpose A is ill conditioned so that, A 

transpose A is prone to numerical errors. So, if A transpose A here is ill conditioned, 

inverting that is a problem, so we cannot invert it directly. So, instead of when A 

transpose A is ill conditioned, we can do a QR decomposition. It turns out that, the 



original QR theorem it assumes that, A is non singular, but it turns out that, even if A is 

singular, it is possible to modify the QR decomposition to solve for the least square 

solution, we are going to talk about that later on. 
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However, modified form of the decomposition can also be used to find the least squares 

solution in case A does not possess full rank and consequently, A transpose A is singular. 

So, neither of these two cases, whether A transpose a is ill conditioned, when solving that 

system A transpose A inverse operating on A transpose b is going to be hard, is going to 

prone to numerical errors either in that case. Or in the situation, when A transpose A is 

straight away singular, either in those two cases I can use my QR decomposition to solve 

my problem. 

So, we are going to continue with our discussion in QR decomposition next class and 

following that, we were going to talk about some iterative methods for solving the Eigen 

value problem. So, Eigen value problem in civil engineering and for that matter, any field 

of engineering, everyone has to encounter at some time at the Eigen value problem, 

because it is too important, it governs the physical behaviour of so many systems. 

So, it is very important that, we know of easy to use efficient algorithms for obtaining the 



Eigen values of matrices, particularly for symmetric positive definite matrices, which are 

commonly encountered while modelling physical systems. 

Thank you. 


