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Lecture – 02
Introduction to Tensor

Welcome  this  is  the  second  lecture  of  module  1.  This  in  this  lecture,  we  will  start

introduction to tensor as discussed in the last week, last class ah. So, here basically the

objective is familiarity with the initial notation and the basic tensor algebra and tensor

calculus which will be helpful for learning this course. So, before we directly goes to

tensor operations as we will, let us first understand what is tensor.

(Refer Slide Time: 00:58)

So, for instance all of us know that scalar vector and the new quantity here is actually the

tensor. Now, scalar as we know, it has only one value ah means it has magnitude, it does

not have any direction or anything ah. So for instance time, density these are the scalars.

Now this is the very important that we should or we will represent scalars with the small

letters or symbols in this course; in a different book you will find a different convention,

but in this course we will represent scalar with a small letters or symbols. 

So, in case of a scalar addition and scalar ah subtraction or multiplication, its values gets

only altered, but in case of a vector, it is always a always have a direction as well as

magnitude; for instance velocity, displacement, these are the vectors.



So,  we  know  what  is  vector  addition,  we  know  what  is  vector  subtraction  or

multiplication. So vectors will be represented by the small bold letters and symbols. So,

this is important because we can distinguish from the quantity itself or type of quantity it

is. So, now the tensor, so tensor is actually the new quantity we need to understand what

is tensor.

(Refer Slide Time: 02:49)

So, let us first ah understand the vector little bit more. So, vector is the always written in

terms of its  component  along the axis ah; for instance if  it  is  a Cartesian coordinate

system, our unit vectors in the Cartesian coordinate system are i j k and then a vector p

can be represented in terms of i p 1 i p 2 j and p 3 k, so p 1 p 2 and p 3 are components

along x y z directions. 

So, similarly we can define unit vector. Unit vector is the vector for which the magnitude

is 1. So unit value ah but the, it has the direction same as the vector. So, any vector n can

be transformed into an unit vector by dividing its magnitude. So also magnitude know

what is magnitude of a vector, it is the ah; for instance in this example 2 y plus 3 j and 4

k are the vector; we can transform it to unit vector of this form.

So,  now  any  vector  in  any  general  coordinate  system  may  be  spherical  may  be

cylindrical or general curvilinear coordinate system. We can express is as component

wise; so e 1, e 2 and e 3 are the basis vector on that coordinate system and we can

represent any vector ah according to its component along u 1 direction u 2 direction and



e 3 direction. So, in general vectors can be ah, in general vectors are represented in terms

of  component.  But  we  will  learn  how  to  ah  ease  this  process  through  the  indicial

notation.
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Now, first let us introduce what is tensor? So, tensor among tensor we will first introduce

what is second order tensor. So, let me first ah read out the definition, the a second order

tensor is  a linear  transformation which transform a vector to another vector. So,  this

example, this definition is very helpful to understand the higher order tensors actually.

For instance in case of a second order tensor or any matrix, any square matrix can be

considered as a second order tensor ah.

As we know that matrix vector equation Ax equals to b ah, the a matrix A transforms the

vector x to another vector b, so A is a second order tensor. So, here so if this matrix A is

known as the coefficient matrix of the ah solution of the system of equation, this matrix

A is known as the second order tensor.

So, second order tensor or any tensor we will represent by the capital  bold letters or

symbols. So, for instance we have learnt the scalars have no directions, vectors have only

one direction. So a second order tensor have two direction. So, in a similar argument if

we say fourth order tensor, so it will have a four direction components.



So, even though it looks a very unphysical from a 3-D 3 dimensional space, but we will

understand it for our this course. So, in for example, the stress tensor which all of you

probably know from the solid mechanics course or stress matrix is a, it has a this form

and this tensor, this matrix is known as a second order; this matrix is a second order

tensor.

So, similarly the strain matrix is also a second order tensor. Now why it is called second

order tensor, because it has a two direction component. So, first component as we know

it represents the direction of normal and second one is the direction at which it is the

acting. For instance sigma 1 2 or sigma x y if I try to understand, what is sigma x y ah,

then the normal direction is along the x and it is acting on the y direction. So, similarly

sigma x and other ah components can be understood.

So, in general ah, so if I trend the if I want to define higher order tensor, so for instance if

I want to define a higher order tensor or a fourth order tensor, so fourth order tensor how

can I define? I can define in this way that a fourth order tensor is a transformation which

transform a second order tensor to another second order tensor likewise the definition of

second order tensor which is a vector to another vector.

So, essentially ah in this way we can define matrix itself.  The matrix is essentially a

linear transformation,  which transform a vector space to another vector space. So, ah

several  examples  of  second  order  tensor  we  observe;  for  instance  a  identity  tensor.

Identity tensor for of which a identity matrix of n’th order we represent it by I n; so this

is also a second order tensor. Now ah, right now we will only learn about second order

tensor and then in the later part of this module, we will also learn what is fourth order

tensor and it is used for us.



(Refer Slide Time: 09:08)

So, so a vector ah as we were discussing in the last slide, a vector can be represented in

the component form. Now, if you look carefully that if I want to, if I fix the coordinate

system for which the basis is e 1, e 2 and e 3, then we can simply write it as e summation

of i 2 3 u i e i. Now this e i is the unit vectors. So now for our ease of writing we can

simply remove this summation symbol, and if I write u equals to u i and e i and if we

assume that i repeats from 1 to 3, then this type of representation is very helpful for us

ah, because we will ah we will not to write this summation and so this type of summation

in the removal of this type of implied summation is known as Einstein convention or the

initial notation.

For instance if I want to write u i i and if I assume that i repeats from 1 to 3, then it is

simply u 1 1 u 2 2 plus u 3 3. So, similarly if I want to write u i v j e j e j is the e is the ah

unit vector, then u i is first sound and then v j e j. So v j e j is again summed ah as per the

ah as per our understanding of i j repeats from 1 to 3.

So, in this way we can reduce our computation or we need not to write every vector or

every  tensor  in  a  component  form.  So  this  is  essentially  for  ease  of  our  notational

notation or also it is known as tensorial representation. Sometimes we will also use only

tensorial notation and notation. So in a component form, we will understand it through

the indicial notation. 



Now while doing this we introduce two indices; one is dummy index, another is free

index. So, what is dummy index and index which does not appear  in equation,  after

summation is carried out is known as dummy index. Dummy index cannot be repeated

more  than  two times.  So,  we will  see all  these  during  this  course and we will  also

mention there. So for instance, if I want to write this summation then ah it is implied that

u i e I; it is ah repeated ah till i equals to 1 to 3. So the free index, free index is a generic

index which can have any initial form. For instance if I want to write a if I write this

expression what this mean; a ij x i is the i is the dummy index here and j is the free

index.

So, ah here are we, we can assume the value of j and then do all summations over i. So

this is the two types of index you have to keep in mind and we will always use this type

of ah notation to represents our quantities; for instance the kinematic quantities or the

derived quantities.

(Refer Slide Time: 13:15)

So, now let us see some example, if I write y i a i j x j, then I can simply assumed i or I

can simply write in terms of i a i 1 x 1 ai 2 x 2 and i 3 x 3 so on. So, similarly for a

different i which is y 1 equals to a 1 1 x 1 and so on. So, in a vector representation if I

write a i, it means that it has three components, because we will mostly work with the

three component form in 3 dimensional space; so, i i varies from 1 to 3. 



Similarly  if  we want  to  write  a  component  of a  matrix  a  i  j,  so ai  j  means it  is  all

component of a matrix and if the matrix is of dimension or order three ah, then it runs

from i equals to 1 to 3 to j equals to 1 to 3. So, this type of representation will shorten our

writing and this is the only reason we are doing this. So, similarly vector addition if I

write  ah  ai  bi  that  means,  each  component  of  ai  is  added  with  the  corresponding

component to of the bi, so a 1 b 1 a 2 b 2 and a 3 b 3. Similarly matrix addition is also

component wise addition and which can be understood from this ah symbolism.
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So, now scalar multiplication;  the scalar  multiplication is  also similar to that,  so if  I

multiply ai with a scalar lambda, then it is multiplied with the all component. So, ah

another important thing which probably we have not learned in solid mechanics is the

dyadic product or the outer product or sometimes it is also known as tensor product, so

ah it is ai bj.

So, if I write a tensor product b a tensor product b, so it is simply a i bj. Now what does

this mean ai bj, so where I runs from 1 to 3 and j runs from 1 to 3. So, similarly a 1 b 1 a

2 b 2 a 3 b 3 and so on, so this type of symbolism also will be using here and another ah

which probably all of you know, the inner product or dot product of two vector which is

a dot b.



So, a dot b is we write it a 1 e 1 is the two vectors if we write in this form; that is a 1 e 1

plus a 2 e 2 plus a 3 e 3 a and then b is also similarly we write a 2 ah, sorry b 1 e 1 and

plus b 2 e 2 and b 3 e 3.

So, if we take dot product between two vectors, we know that e i ej equals to 1 when i

equals to j, and this dot product will ah ultimately produce a scalar which is ai bi; so

which is essentially if you write a with the summation convention a 1 b 1 a 2 b 2 and a 3

b 3. So, this is the way we will represent here. So, it is very important to understand

these notations, because ah in this process we can shorten our ah representation.
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Now so for instance,  decomposition of a second order tensor into the symmetric and

skew symmetric part. I think ah those of you who have learn the matrix algebra, then

probably you must have known this that any vector or a any matrix can be represented in

terms of a skew symmetric matrix and a symmetric matrix.  So, any matrix A can be

represented represented like this A plus A transpose plus half of A minus A transpose

right.

So, this if we want to write it in terms of initial notation, it looks like this. So, a ij is the

component of a and a ji is the component of a transpose, and similarly the this part also

we can write. So, here generally we represent the symmetric part is with a first bracket

and  anti  symmetric  part  or  skew  symmetric  part  with  the  third  bracket.  So,  this

expression is actually equivalent with the matrix expression this. So, this is essentially



the tensorial notation and this is essentially the indicial notation. So we have to ah we,

we may use both of them to write the our quantities. So, when we write in terms of this

so it is implied that each components are added properly. So, for instance if I give some

example, so if this is a matrix a and this is a vector b, then its component wise it is right

like this. So, if I write aii which is the all summation of all diagonal elements 1 4 2 which

is 7.

So, for your information this is also known as the trace, trace of matrix a which is a ii

right and then if I want to take the dot product with the vector v or b dot b, then as we

have seen earlier which is bi or the square of each components of b,; so which turns out

to be the 20. So, similarly we can use ah, we can give other examples also.
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For instance b i bj, so if I want to do tensor product between the same vectors or the for

instance b, tensor product b if I want to do; so this we will turn out to be the b i bj. So

this will ah be this, so component wise it looks in this form. Now one should understand

here this dyadic product or the tensor product increase the dimension. So, essentially b

was a ah single direction or a b was a vector and then when we do its tensor product it is

a, it becomes a tensor and it is a second order tensor.

So, similarly aij or the symmetric part of the matrix we can write it in this form. So,

similarly if I want, if I want to multiply vector b with the matrix a which is essentially a

ij bj, so we can write the component form in this way. So, the first row this is if I take the



I and then, similarly we can multiply with the corresponding vectors of b. So, this is

helpful in understanding the tensorial notation.
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Now, we will define what is Kronecker Delta. I think ah you have learned this in your

solid  mechanics  course,  but  just  to  review,  this  Kronecker  Delta  is  a  actually  and

operators or in a similar to ah what we have used in solid mechanics. So delta ij or it has

very interesting property, the property is when i not equals to j then it is zero; when i

equals to 1 it is i equals to j it is 1. So, generally we will use 3 dimensional Kronecker

Delta which represents the identity matrix because all i j's are different here so this will

becomes zero, all of diagonal elements.

So, the properties of Kronecker Delta, since its a diagonal matrix, its transpose will be

the same diagonal matrix. So, ah; that means, delta ij is delta g i and its stress will be

always 3, and if I want to multiply with a vector with the Kronecker Delta the vector will

remain same. So this ah, and if I want to a multiply a matrix the matrix will not change.

So, similarly delta ij delta jk I can write 3, so this is the property of the Kronecker Delta.

We need to remember this properties, because sometimes we will use these properties.
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Now, another symbol or another operator we will use this permutation symbol or Levi

Civita symbol. So, for instance the permutation symbol is known as the epsilon ijk. So, it

has you see the i runs from 1 to 3, j runs from 1 to 3 and k runs from 1 to 3, so total 3

cross 3 cross 3; that means, there are 27 components of this ah operator.

So, if you look carefully that a second order tensor has total 3 cross 3 component. So

stress matrix for instance or stress tensor for instance, is have 3 cross 3 component right;

so it has 6 component, but this permutation symbol is essentially 27 components. So, this

is actually if sigma is the second order tensor, then permutation symbol is actually harder

a tensor, because it is the 27 components.

So, we understand what is third order tensor here. Now this permutation symbol like

Kronecker Delta has a property that if i j k ah, if we writing even permutation, then this

permutation symbol will be 1 and if i jk if we write in odd permutation ah this will be on,

odd permutation i, then it will have also three component which will be ah minus 1.

For instance if I write 1 to 3 epsilon 1 to 3 this will be 1, then 2 3 1 this will be also 1 and

epsilon 3 1 2 this is 1. So, if I change this flip these two that is if I write 1 3 2, then this

will be minus 1 and if it is any one is repeated here, then it will be always 0. So, if you

look carefully then you will see that 21 such components will be zero and there will be 6

such components which will be nonzero which is either 3 of which will be plus 1 and 3

of which will be minus 1.



So, for instance we can use this permutation symbol two evaluate the determinant of A

matrix. So if the matrix A is ah we know the determinant of a matrix already. So if we

write it, so it will be like this. So, you can use pen and paper to expand this expression

and check whether this will ah, this goes to the determinant of a matrix or not.

(Refer Slide Time: 25:57)

So, now for instance another application is cross product. So, all of us know what is

cross product; so which is e 1 e 2 and e 3 a 1 a 2 and it will determinant of that. So, if I

write it in terms of permutation symbols which is essentially epsilon ijk ei and then aj bk.

So, the component wise form is just you remove the ei, the vector unit vector term.

Now similarly scalar triple product; so, scalar triple product ah we know which is a dot b

cross c something like that here you dot v cross w, so v and w if we write it initial form it

will just we can write v j ej and w ke k. So you if I write v j e j and w ke k in terms of

this form or this form then finally, we can write this scalar triple product is epsilon ijk uj

vj w k. So, this is another important relation or identity is that relating this permutation

symbol with the Kronecker Delta. So, if I if I write or if I want to relate this so epsilon

ijk is epsilon ah into epsilon m and k should be of this.

So, this is an important relation and this requires to prove some of our relations or some

of the theorems, so ah. Then we will see the coordinate transformation.
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So, coordinate transformation already you have understood in the ah solid mechanics

course, so we know if we rotate a coordinate axis about something or about a vector, so

we can write we arrive a new coordinate system x prime y prime z prime and our initial

coordinate system was xyz. So, relation between these two coordinate system are already

known to us which is e i prime is Qij ej, so e is the basis vectors in x y z coordinate

system and prime basis vectors are e prime j.

So, now, we know that Qi j's are the direction cosines right, so this Q becomes a rotation

matrix.  Now for  3  D this  looks,  if  I  want  to  instead  of  a  basis  vector,  if  I  want  to

transform a vector then which is simply a we know from the calculations that l 1 u m 1 v

n 1 w, so l 1 m 1 n 1 are direction cosines. So, similarly in 2 D we can transform a vector

which is l 1 and l 1 u and m 1 v. So this is well known to us, but if we want to transform

a tensor how should I do?.
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So, before we do it, do that let us see that how we transform our strain or stresses in our

solid mechanics course. If you remember carefully that that prime quantity strains and

prime quantities x 6 strains and prime quantities  yy strains and x prime y prime the

engineering stress,  the strains,.  These are related with the non prime quantity  or non

prime coordinate axis strains with this. So, if you look carefully these are the cos theta

square sin theta square cos theta sin theta and so on.

So, if we write now the strains in vector format which is also known as the void notation

ah. So this tensors we can write in a vector form which is of this form; so this is a void

notation. So, if you write prime quantities in a vector format and the non prime quantities

and vector format, then these two are related with the matrix of this form. This is not a

rotation matrix because the rotation matrix is l m ah l 1 m 1 and n 1 in 3 D, and for 2 D

which is l 1 m 1 and m 1 l 2 m 2, so ah, but these matrix is the transformation matrix for

the strains.

Now you see a so we can understand from this configuration or the transformation of

strains that each of these direction cosines are multiplied twice and the reason is that,

because strain is not a vector strain is a tensor. So, it has two direction. So if I write it in

a more formal rotation so it comes out to be strain is this. So prime quantities strains

which is here it is a tensor and the non prime quantity strains are related with the rotation

matrix Q is in this way. So Q is epsilon prime, it is Q epsilon Q transpose and if I write it



in initial notation it is of this form. So, ah the reason why this transformation is like this,

because strain has two directions, not one direction.

So, for instance in the previous slide we have seen how to rotate a vector. So a vector is

essentially a hm one direction ah, it has one direction. So, if I want to rotate a vector, so

it  is  essentially  multiplying  the pre multiplying  the rotation  matrix.  Since strain is  a

tensor our transformation of trends looks like this.
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So,  similarly  for  3  D we  can  formulate  it.  So,  if  I  write  it  in  this,  I  think  this  ah

expression you are familiar in solid mechanics. So this is essentially this; so these strains,

this is in tensor format and this is a void notation. So, these actually ah formalize how we

learnt ah, how we represent or how we rotate tensors in 3 D.
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So, now we will go for what is called principal direction. So, principal direction is all of

us know what is principal stress on which that there is no shear stress right. So how it

comes? So as we know that  ah that  it  is  an Eigen value problem. So, if  I  write  the

corresponding Eigen value problem which is if a is a matrix its Eigen value is det of A

minus  lambda  I  equals  to  0  that  we  know and  this  is  essentially  the  characteristics

equation which represents the three roots of a Eigen value lambda and then, this I 1 I 2

and I 3 are also we know from our solid mechanics knowledge that trace of a is I 1 and

trace of and I 2 is all summation of all (Refer Time: 33:58) and then, I 2, I 3 is essentially

the determinant.

So, these I 1, I 2, I 3 are known as the invariant of matrix a, which is a second order

tensor and this ah, what is this invariant mean? Invariant means if you rotate this matrix

a, these invariants I 1 I 2 and I 3 will not change. The component of this matrix may

change, but these quantities will not change.
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Now so as we were discussing Eigen value and eigenvector, so solution of characteristics

equation will give three roots which are called Eigen value and these Eigen values are

ah, each, for each Eigen value;there is a eigenvector. So, after finding out the Eigen value

the Eigen value matrix will look like this. And so those of you who have little knowledge

about null space or the vector space knowledge.

So, we can say these eigenvectors are in the null space of A minus lambda I. So, the

number lambda is chosens are such that A minus lambda I has its null space and A minus

lambda I must be singular. So, this lambda is a Eigen value o if and only if this (Refer

Time: 35:26) of A minus lambda I equals to zero, so these things we know.
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So, now with an example we can see that how to calculate this Eigen values. So, this is a

matrix, so the all invariants we can compute and this then characteristics equation we can

find out and we can find out the roots of the characteristics equation which is 2 minus 5

and 5, and then ah we can compute its ah eigenvector.
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 For instance the computation one, computation of one of the eigenvector is this and then

finally, we can compute the eigenvector matrix right. So, I stop here today, so in the next



class we will also ah review some of the matrix algebra and tensor analysis, and then we

will mostly discuss about the tensor algebra.

Thank you 


