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Welcome this  is  last  lecture  for  Constitutive  Relation,  actually  in  this  lecture  before

doing the summary I thought will discuss about the lamina constitutive relation.

(Refer Slide Time: 00:35)

So, basically this word the lamina what does this means let us first give a definition what

is  essentially  a  lamina  is.  For  instance  we  are  in  today’s  age  is  age  of  composite

materials; so, in a composite material what you see is essentially a series of layers of

material for instance it is called ply or oven fabric or essentially a plane. So, those planes

I have a negligible thickness or very small thickness and compared to other 2-dimension

and those planes are actually known as the lamina.

A lamina is a essentially a part of laminate, where a series a laminate is essentially a

series of lamina is arranged in a suitable order as per the material behavior desired. So,

the essentially the lamina is a part of a or a is a plane which is a of very small thickness

such which constitutes the laminate basically.



So, the more detail of this lamination laminate theory or how the constitutive equation

for laminate will be derived, it will be discussed in composite technology course or any

other  course  possibly.  Here  what  I  thought  I  will  describe  that  if  there  is  a  fiber

orientation in this direction of lamina is, essentially a lamina is a 2D body of very in

small thickness.

So, this laminate lamina is essentially a 2D body and it is made of suppose oven fabric or

any  made  of  unidirectional  fiber.  So,  this  fiber  directions  are  along  this  now these

direction what I say is the 1 2 direction and it is the material axis, so 1 2 direction is

essentially the material axis. So, we write material axis, so now our loading axis or the

structural axis is essentially x y direction. So, when we solve this problem with a given

load or stress, then we need to use the constitutive equation in terms of structural axis or

the x y system.

Now, in this x y system we already know that how to transfer this material properties

from one axis to another  axis.  So,  here I thought I  will  give a special  case of a 2D

orthotropic material or 2 dimensional orthotropic lamina where the fiber axis and the

structural axis is essentially different. So, now in that case in 2D orthotropic material we

know: what is the constitutive equation and the constitutive equation looks like this. So,

here you see that the there are 4 independent constants, I have already discuss this things

in a previous classes.

So, these are the stress components and strain components it is, it can be also written is

in this form that epsilon 1 in voigt notation epsilon 2 and epsilon 6 this  format.  So,

remember this is essentially the sheared strain gamma 1 2 and the similarly stresses can

be also be written as sigma 1 sigma 2 and sigma 6. Now, the relation between from the

previous  to  last  to  last  class,  we  know  how  these  engineering  constant  and  these

mathematical constants Q is here. I have denoted in terms of Q because this Q is coming

from the essentially the plane stress constitutive equation, this is body under plane stress

which we will learn in the next classes what is plane stress and plane strain condition. 

So, that is not required right now, but here I have depicted the constitutive matrix in

terms of Q. So, instead of C essentially C we derived for the 3D constitutive matrix and

3D from there, if we impose the plane strain plane stress condition when you get the Q

and  Qij  x  so  that  we  will  learn  later.  Now, this  Q  matrix  if  I  write  it  in  terms  of



engineering constant. So, there are in this fiber direction there are Young’s modulus in E

1 will be Young’s modulus and E 2 will be Young’s modulus in these direction and then

the Poisson’s ratios will be nu 1 2 and nu 2 1 and then the Shear modulus between the in

plane Shear modulus which is G 1 2. So, now among them this nu 1 2 and nu 2 1 both

are  both  of  them are  not  independent  as  we know, because  we know the  reciprocal

relations which can also be proved from the bect is reciprocal theorem.

So, this nu 1 2 and nu 2 1 how it is related we know that. So, now finally the number of

independent constants will be E 1 E 2 and 1 of them say nu nu 1 2 and G 1 2. So, these

fours are my independent constant which is consistent with the 2D orthotropic material.

Now with this we can write the Q i j S how it will. So, these are the forms and these

forms also we learned it in our previous classes how to obtain this forms because, we

essentially do 3 test here 1 is for this lamina what we do is essentially we do a axial test.

Where, I put only sigma 1 1 in this direction and then use the compliance relation which

will  give  me the Q S 1 1 the  compliance  relation.  Also  we know that  is  epsilon is

essentially related to s and strain sigma.

So, these for each sigma how each epsilon will come out we know we have seen it for

the 3D case. Similarly, another relation another loading case will consider, where will

give only in this direction which is sigma to here and by the way this is the fiber axis

here the fiber axis is here also, will give the sigma 2 and 2 2 in this direction and another

is essentially the sheared pure shear stress where will give this. So, this gives us which is

essentially sigma 1 2. 

So, this gives us the 4 independent constants which is E 1 E 2 nu 1 2 and G 1 2. So,

essentially we find out Sij from that Sij from that and once I know the Sij if I invert it I

get  essentially  the  Q  matrix  which  is  S  inverse.  So,  from there  we  get  the  lamina

constitutive equation and how it we; how the engineering constant is related with the

lamina constitutive equation. So, now it is important thing is here that whatever we are

doing it  is  in this constitutive equation all  these 1 1 2 2 and 1 2 these are the fiber

direction and loading direction or the structural axis remain same.

Now, when this structural axis is essentially rotated; that means, the angle between the

material axis and structural axis is in a theta, here for instance here then how we can

transferred this that we will see.
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So, essentially this is a lamina constitutive equation which is this, so this is the my short

form where in 1 2 axis I am writing the lamina constitutive equation. Now, similarly in

the x y our objective is find out these constitutive matrix how it will look. So, we know if

we from the strain transformation relation which we have learned also in this course in

the previous class how to transform strains. So, in the strain transformation case or stress

transformation case, we know what is a rotation matrix. So, essentially the vector we

know if you write it the vector or displacement we know which is cos theta sin theta and

minus sin theta cos theta whatever is the theta. So, this is a 2D case, so this is essentially

rotation matrix.

So, these rotation matrix you can transform vectors and from that vectors we compute

the  strain  and stresses  similarly  then  we get  the transformation  matrix.  So,  this  is  a

transformation matrix form x y to 1 2, so which is T and T looks like this. So, it is in

terms of m n where m and n are cos theta sin theta. So, now here if you want to we know

the sigma 1 2 essentially the constitutive relation in 1 2 direction we know and in the

most  case  when  a  material  will  be  tested  essentially  along  the  fiber  direction  the

properties will be given. That means, E 1 E 2 will be along 1 2 direction nu 1 2 G 1 2

will be given.

So, when a however in whatever way you want to align it or the loading axis maybe

different  with  the  material  axis;  so,  in  that  case  actually  you  have  to  find  out  the



constitutive relation or the constitutive matrix along the structural axis. So, that is the

objective here which we are deducing it here. So, now this Q x x Q x y Q x s Q x y and

Q y y and so on, here you see that material is not essentially purely orthotropic material

and which is natural because, the strength along these lines along these fibers and this

direction will be different because it will be rotated.

So,  essentially  this  is  the  x  y  system  where  this  is  the  constitutive  axis  and  the

constitutive relation and this is the short form of that. Now here essentially if you find

out if you want to find out stress attic x y component you have to invert it. Now this

inverse is very simple if you substitute minus theta it will be T inverse is T of minus

theta, essentially theta is a positive here theta is greater than 0. So, minus will be minus

sin  theta  cos  theta  cos  of  minus  theta  will  be  cos  theta,  so  this  will  be  inverse  so

essentially T inverse we know. Now once I know this our problem is to find out the next

this in the x y system.

(Refer Slide Time: 14:00)

Now, it can be done in a little simple with a simple trick if you now transform the strain.

So, if you remember that in the previous lecture I have used two different transformation

matrix for T sigma and T epsilon. So, T sigma is for stress transformation matrix and T

epsilon is the strain transformation matrix, but and this T sigma and T epsilon are related.

So, we know that relation, but in spite of using those relations will not use this relations

here,  instead of that  will  just  check whether  if  I write the this  quantity  this  quantity



instead of 2 epsilon 1 2.  If  I  write  epsilon 1 2 I  can represent  it  in terms of T. So,

similarly it will be instead of shear strain it will be engineering strain which is epsilon or

tensorial strain whatever epsilon x x y. Now so if you do this now this will be so sigma x

y sigma x y we know which is C inverse of T inverse of this quantity.

So,  I  now substitute  the constitutive  matrix  for  the  1 to  coordinate  system which is

essentially this. Now to remove T this 2 I just multiplied with this 2, so this 2 can be

removed.  So,  here  now  this  quantity  again  I  substitute  with  this  relation  which  is

essentially T epsilon x x x epsilon y y and epsilon x y. So, these quantity becomes now

my the transformed constitutive matrix in the direction x y. So, this is the x y constitutive

relation  for the material  in  the,  this  fiber  this  unidirectional  lambda.  Now this if  we

multiply so we know: what is that component of T inverse, so which is essentially T of

minus theta.

So, this will be minus these are the sin will be flipped essentially and then this we can

evaluate T inverse and then T also we knows and Q 1 1 Q 1 2 Q 1 2 and Q 6 6 Q 2 2 we

know. So, if we write it this constitutive matrix in a proper manner which is essentially

this. 

(Refer Slide Time: 16:54)

So, we have which is essentially this also we can compute the each component of this

constitutive matrix, which is sigma Q x x Q x x Q x y Q x x and then Q s s Q y s Q y. So,

it is it is important to know here that this is again 4 independent constant here and this



matrix looks that these terms are the 0 terms. So, these are due to the Poisson’s effect, but

these are the coupling coefficient where shear strain and normal strains are shear stress

and normal stress are coupled here these are the coupling coefficients. So, these coupling

coefficients  in  1  2  direction  it  is  0,  but  in  case  of  a  rotated  direction  this  coupling

coefficients are not 0.

So, this is important here to know so essentially even though these material is essentially

originally the in 1 2 axis it is orthotropic. But in x y axis this coupling coefficient arise

even  though  this  coupling  coefficients  are  not  independent  because,  this  coupling

coefficients are functions of all Q 1 Q 1 2 Q 1 Q 2 2 and Q 6 6 and theta which is cos

theta which is through m and n cos theta and sin theta. So, essentially the fiber parameter

Q these are the number of independent components here essentially are Q 1 1 Q 1 2 Q 2

2 Q 6 6 and theta.

So, depending upon the theta this coupling coefficient and actually all Q x x components

will be this components will be different. So, even though material so once again I am

repeating  that  even  though  material  is  orthotropic  originally  in  1  2  axis,  it  is  not

necessary that x y axis it will be again the same structure of the constitutive matrix will

be preserved because it is rotated and this rotation will also depend on how the loading

axis of the structure is aligned.

So, this is I wanted to share with you for the lamina constitutive relation, which probably

you will  learn  it  in  more  detail  when will  learn  composite  technology or  composite

mechanics. Where how to find out a constitutive equation for a laminate will be also

discussed is, a laminate is essentially symmetrically or anti symmetrically placed several

lamina and through the thickness integration we can object the constitutive behavior of

the laminate.

So, this actually completes our constitutive equation part. So, to summarize actually I

summarize finally what we have learned here, what was objective and what essentially

we have learned. So, first of all we started with very general elastic material where the

with the stress strain curve and we decided to confined ourselves to a linear part of that

elastic curve which is essentially the constitutive properties, essentially proportional with

the  means  it  is  a  constant  essentially  stress  is  proportional  to  strain.  So,  linear



constitutive equation which is essentially comes from the which is known as the hooks

law. So, we have derived the Hooke's law.

(Refer Slide Time: 21:04)

So, first part we have derive the hooks law and essentially we have derived it for the

isotropic material, for which our basic knowledge from the strength of material or solid

mechanics from which we know this. So, we have derived the hooks law for an isotropic

material which is essentially um, if you remember which is lambda plus 2 mu in this

form and if I write it in a tensorial form.

So, lambda trace of E plus 2 mu epsilon so this is the form. So, this is trace, so trace is

epsilon k k. So, and then in a matrix form which is lambda plus 2 mu mu 0 and so on. So,

this we know we have derived it for the isotropic material, we have also derived bulk

modulus and first and second lame constant which is essentially a lambda and mu and

how it is related with the Poisson’s ratios.

Then we found out the relation between actually what is the physical meaning of this

constant for instance, if you if somebody wants to find out the material constant for a

material how do you find out. Essentially material constants are not measurable it is a

derived quantity, essentially if you measure stress you measure stress you measure strain

and then from that you basically stress by strain you calculate young’s modulus.



So, for a torsion test for tension test for a sheared test do all those test and then found out

different  constants  material  constants  for  the  isotropic  material.  Now once  we  have

sufficient knowledge with the isotropic material then we went to the anisotropic material.

So, to start with an anisotropic material we first derived the strain energy form and then

finally with that strain energy density we are introduced a fourth order tensor which is

Cijkl for a general anisotropic material, where there is no symmetry is assume which is

essentially partial derivative of the strain energy function with respect to strain.

So, we have derived this thing and with the hooks law in implementing the hooks law.

So, which is a again we can write this is del square sigma ij del square epsilon sorry del

sigma ij del epsilon kl. So, in this form also we can write it. So, now here with this we

have introduced this fourth order tensor and this fourth order tensor in general will have

3 to the power 4 in component which is 81 independent material constants.

So, these 81independent material constant is essentially not all are independent, if we use

that stress and strain symmetry sigma ij equals to sigma ji and epsilon ij is epsilon ji that

is the introducing the minor symmetry. So, then we can reduce it to from 81 do we can

reduced it to 36 constant. So, this is very simple essentially if you write it 3 cross 3 cross

3 cross 3 and then this is essentially 6 this is essentially 6, so it is 36 component and then

if we use major symmetry that is. 

So, partial derivative which is Cijkl I can write it equals to Cklij, so which is just shifting

the partial derivative. So, del square are by del x del y can be written as del square del y

del  x,  that  same logic  is  applied  and so  with  that  we can  just  arrive  finally  the  21

independent  constant.  So, with this 21 independent constant we say this is a triclinic

material.

So, this is a triclinic material where there is no symmetry or reflection or even rotation

symmetry is assumed. So, it is a essentially a triclinic material, now from there actually

first we have derived the once we know the 21 independent constants, we know which

coefficients are essentially responsible for it. So, we are derived the hooks the stiffness

matrix or the material constitutive matrix which is C 1 1 C 1 2 and so on.

So, we know this first 3 components are responsible for the normal stress, then these are

the  coming  from  the  sheared  stress  component  and  these  are  the  Poisson’s  ratio

components Poisson’s ratio and these are the coupling coefficient, where the normal and



the sheared stress are coupled. So, see from C 1 4 to C 1 6 these are the essentially the

coupling coefficient, where normal strain and shear strains are or normal stress and shear

stress are coupled so these are the coupling coefficients.

Now these are  also the known as a chains  of coefficients,  so these are the coupling

between two sheared strains essentially. So, these we know it from a general triclinic

material. So, from that triclinic material we again try to reduce and define a new material

which is first we define monoclinic material, where mono in the monoclinic material we

have found out the constant is number of independent constant is 13, which is essentially

a done through in variance of a strain energy function. So, we since strain energy is a

scalar, so it will be scalar is a in variant.

So, we use that argument to derive this 13 independence constant and for a monoclinic

material actually there is a 1 plane of reflection symmetry. So, where date of Q equals to

essentially minus 1 if you write in terms of rotation.  So, so date of Q is minus 1 or

determinant of rotation matrix is essentially minus 1. So, 1 plane of symmetry if we have

then we find out thirteen independent constants and how the constitutive tensor or this

symmetric will looks like that also we have derived.

So,  essentially  then  we  defined  an  ortho  material  which  is  known  as  orthotropic

orthotropic material,  where instead of 13 instead of 1 plane of symmetry we assume

another plane of symmetry or another symmetry plane. So, each since 2 if the 2 planes

are mutually orthogonal then third plane is also essentially will have the symmetry. So,

finally the orthotropic material is have 3 plane of reflection symmetry.

So, that gives us the number of material constant is further reduced which is 9 and then

this orthotropic material  we again consider a plane of isotropic,  if you remember the

figure this is how it is if it is x 1 then x 2 and x 3. So, what we assume that x 2 x 3 plane

is essentially this plane is plane of isotropy and then we reduce the number of material

constant is 5. So, this since this is an isotropic plane, so there will be 2 material constant

because isotropic we know it for 2. Then from this thing we again if we assume all 3

planes are planes of isotropy, so then we get into this the number of constant is 2.

So, then what we did is essentially these are all in terms of C ij’s, so in a voigt notation C

ij so this C ij’s are again related to the engineering constant; so, which we are more

familiar with like young’s modulus Poisson’s ratios these constants. So, these constants



we then again derived from a 3 different test tension and shear test for each cases for a

3D material and then for an orthotropic material how these mathematical engineering

constants a mathematical constants C ij and engineering constant E 1 E 2 mu 1 2 and so

on is related. Now then what we did is essentially how these engineering constants are

bounded that we have also derived.

So, we found that for a general orthotropic material E 1 E 2 E 3 G 1 2 G 2 3 and G 1 3

should be greater than 0 and Poisson’s ratios nu 1 2 nu 2 1 nu 1 2 nu 1 3 and nu 2 3

should  be  less  than  half.  So,  this  actually  states  that  the  Poisson’s  ratio  cannot  be

arbitrary large arbitrarily large and then if 1 of them is large, then 1 has to the other 1

cannot be arbitrary large and then some restriction with the Poisson’s ratios with the

values of the Poisson’s ratio with the relative young’s modulus.

So, which is nu ij mod of nu ij if you remember is less than equals to Ei by E j to the

power half. So, square root of Ei by E j those things we have derived. So, this poses

some restriction on the engineering constants which cannot be arbitrary. So, then once

we done that we then derive some material derive some rotated, if the axis structural axis

and the material axis are not same or material axis is not aligned with the structural axis,

then how the constitutive matrix will look like that also we have derived.

So,  the learning objective  for  this  course is  essentially  even if  a  general  anisotropic

material is given. So, how to how it is constitutive relation or constitutive matrix looks

like that is our main objective. And then, what are the physical meaning of this material

parameter and how to obtain this material parameter at least for an orthotropic transverse

isotropic anisotropic material, that we have learned in this module.

So, in this in the next module essentially will start with the balance law. So, till now what

we have learned is the material what first we have learnt some elements of tensor algebra

and tensor calculus. Then we have defined: what is stress strain, then so essentially we

have defined strain displacement relation and then here module 3 and module 4 we have

defined how stress and strains are related. 

So, through a constitutive matrix and this constitutive relation is linear for this case and

this is known as the hooks law. So, then once we once we complete third and fourth

module, in the next module will learn how a physical problem has can be solved. So,



basically  balance  laws  or  the  conservation  equations  of  the  elastic  solids.  So,  this

completes this module.

Thank you.


