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Welcome. So, this is the lecture number 50 of module 10, so, where we are basically

discussing Thermoelasticity. So, in the last class we have introduced what is the use of

thermo elasticity and basically the Fourier law of heat conduction we have discussed.

And,  then  the  after  Fourier  law  of  heat  conduction  then  we  actually  described  the

conductivity  of  a  material  and  then  heat  propagation  or  the  heat  equation  for  one-

dimension also we have discussed.
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So,  in  this  lecture  we will  introduce  the  basic  Duhamel-Neumann equation  and this

equation is actually connected with the total how total strain is related to the mechanical

strain as well as the thermal strain. Now, the basic assumption for here is heat conduction

through elastic process is not affected by the deformation of the solids. So, this is an

assumption even though this is valid for a the structural material that we have used we

are using. So, it may not be valid for all material.

So, the material we are talking here is mostly follows this and if this assumption is taken

care or if this assumption is taken then the total strain of a elastic body is essentially



mechanical strain and thermal strain. So, mechanical strain which it is due to the external

loading and then thermal strain is due to the temperature effect or increase or decrease of

normal  temperature  change  compare  with  the  surrounding.  So,  that  we know that  a

epsilon ij is a total strain. So, it has two component epsilon a minus epsilon ij and then

epsilon thermal the thermal strain is essentially alpha ij into delta T which is the T 0 is

the temperature at the surrounding and delta T is a increment of temperature in the body

and T is the final temperature.

So, now this relation is specifically known as the Duhamel Neumann equation and this

alpha, alpha ij is the coefficient of thermal expansion which all of us know that from our

knowledge of mechanics basic mechanics or the first year mechanics we know that what

this expansion of thermal expansion coefficient of solid means. So, now we will derive

this  Duhamel-Neumann  equation  and  to  do  that  actually  we  need  to  have  some

understanding of the usual strain energy function and how we can derive that.
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So, for instance the if you remember the Hooke's law then this strain energy function is a

function of strain only the epsilon. So, now this we know from the our previous elastic

deformation only elastic deformation case where strain energy function U is dependent

on the strain only. So, now, if I expand this strain energy in terms of Taylor series then

what it looks like this strain energy is if I can write or if I can expand in Taylor series.

So, which is U 0 plus U 0 or del U 0 del x that is del epsilon ij into epsilon ij plus del



square U 0 into del epsilon ij del epsilon kl into epsilon ij epsilon kl and then half so,

then other third order derivative and so on. So, this is a Taylor series.

So,  this  is  the  first  constant  term and then  the  this  constant  term becomes  the  first

derivative of this thing and then epsilon ij and then half of a this half is coming due to the

factorial and then epsilon ij and epsilon k l. Now, if I now write this as this U 0 is my

constant and then this del U 0 del epsilon ij, I write c ij right epsilon ij then half of c ijkl

that also we know and then epsilon ij epsilon kl and then this becomes this.

Now, the stress strain relation for 3-dimensional body following the Hookean material or

the linear elastic body that also we know that sigma equals to c colon epsilon or in a

indicial form sigma ij equals to c ijkl into epsilon kl. Now, how sigma ij is defined?

Sigma ij is essentially sigma is del this strain energy by del epsilon. So, if I now take the

derivative of this expression. So, del U by del epsilon if I [ni/now] now take. So, this

quantity goes off. So, and this becomes c ij c ij plus this is a quadratic function. So, and

the derivative will  be c ijkl,  c ijkl  into epsilon kl.  So,  now, this  half  will  cancel  the

derivative and then so on.

So, now if I neglect the higher order terms or the third order tensors or mixed form of

tensors means the term after these then this is essentially my Hooke’s law, that is sigma ij

equals to c ij plus c ijkl into epsilon kl. Now, this is essentially the prestress the prestress

or predefined stress that we may or may not consider the prestress. So, if the body does

not have the prestress then this is my this quantity c ij becomes 0. Now, if c ij is 0, that is

prestress is 0 then my constitutive equation is essentially sigma ij is c ijkl epsilon k l. So,

this is my original Hooke’s law that I have derived from the Taylor series expansion of

the strain energy. Now, using these thing actually I will now using this thing I will derive

the strain energy for the thermo elastic material.
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Now, if I now consider a thermoelastic material where the strain energy function is not

only dependent on strain, but also dependent on the strain energy the temperature; so, U

is not dependent on strain it is dependent on the temperature also. So, now, then if I

expand this thing U 0 it will be function of temperature and then I first explained in

terms of strain or it is a the Taylor series I am first writing in terms of strain.

So, again this del U del U by del epsilon ij then epsilon ij in del it is a half of del squared

U U 0 del epsilon ij del del epsilon kl and then epsilon ij epsilon kl and so on, right.

Now, you see this U 0 is a function of temperature only. So, what I did is here first we

expand  in  terms  of  Taylor  series  with  respect  to  only  strain  now you  see  for  each

paramet[er]- each term is temperature dependent term. So, first let me write it in this way

that U 0 is a function of temperature then this is c ij it is also function of temperature and

then epsilon ij is my strain and then half of c ijkl it is also a function of temperature

epsilon ij and epsilon kl and so on.

Now, again if I expand this thing in terms of temperature for instance c ij; so, c ij I am

expand in it again in terms of Taylor series with respect to a temperature T 0. So, we the

temperature change is now delta T is actually T minus T 0. So, T 0 with respect to T 0 if I

can expand now so, which is this c ij and T 0 plus delta T delta c ij of T 0 delta c ij of T 0

with respect to T into T minus T 0 and then so on, this is the first term epsilon ij. Now,



similarly  the second term plus half  the,  this  term I have to this  term I have to now

expand. So, this term and this term actually I am expand in in terms of temperature.

Now, to do that c ijkl T 0 it is a function of T 0 then del c ijkl of T 0 into del T into T

minus T 0 and then again second order terms. So, this multiplied by epsilon ij epsilon kl

and then again all other third order terms, right. Now, if I now use my original definition

of stress that is sigma is the first derivative of the strain energy function which is sigma ij

is del psi by del epsilon ij, if I now use this definition for an hyper elastic body, but now

here my psi or my psi is my strain energy here which is here I am representing in terms

of U. So, del U is my epsilon comma T so, which is a function of temperature as well.

So, now if I now take the derivative of this expression with respect to epsilon ij then del

epsilon del U by del epsilon ij is my this term goes you cancels out and this term only

this c of ij T 0 plus del c ij del T into T minus T 0 then other terms and other terms will

be  here  and then  from here  again  the  this  is  the  quadratic  function  so,  half  will  be

absorbed in the derivative. So, the first term will be c ijkl it is a function of T 0 plus this

then the second term del c ijkl by del T into T minus T 0 and then, but this will be with

epsilon ij right now and then the other terms as well. 

So, now here if we neglect if we considered the small deformation assumption and then

if I considered that del T is less than comparatively less than T 0 then I can neglect the

higher order terms in these Taylor series expansion and basically I can write this the

sigma ij which is coming from here. So, sigma ij is my c ij T 0 plus del c ij by del T into

T minus T 0 and then c ijkl of T 0 and this is also I am neglecting. So, now, here this I

can say approximately equal for small deformation now this is very similar to the pre

stress of the previous case.

So, if I take this c ij is 0 pre stress then my this will be epsilon kl. So, this will be epsilon

kl. So, now, if I considered the pre stress term is 0 that is c ij is if I take 0 here then my

stress strain relation for the thermoelastic material is c ijkl epsilon kl plus this quantity.

Now, del c ij by del T into T minus T 0. Now, this quantity if I say this quantity is my

beta ij or m[inus]- specifically the minus beta ij. So, c ijkl epsilon kl is minus beta ij T

minus T 0. So, this is my the thermo thermal stress actually and this is my the total stress.

So, this is essentially coming from the this is known as the Duhamel Neumann equation.



Now, Duhamel-Neumann equation of this form; now once we know this form then we

can easily convert it to the other means that we can write the stress strain in terms of

thermal and the mechanical strain. So, now if I write similarly the compliance relation;

so, where I write epsilon ij in terms of sigma ij which is essentially 1 by E into 1 plus nu

into your sigma ij minus nu it is a sigma kk delta ij then this if I substitute here what we

get is something like this that we will see now. So, now, here what I have written is your

this quantity. So, now here what I have written is this quantity.
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So, here my so, here this quantity is essentially coming from the Duhamel Neumann

equation.  Now, if  I  if  I  write  this  sigma if  a  in  a  matrix  format  if  I  write  sigma is

essentially C into epsilon here C I am writing in a wide notation and then this beta I can

write it in a matrix form also I can write beta or the beta matrix beta and then T minus T

0.

So, if I now write C inverse sigma is essentially epsilon minus c inverse beta T minus T

0.  Now, this  quantity  I  am saying  alpha  alpha  matrix  is  the  coefficient  of  thermal

expansion solid. Now, this coefficient actually then if I write this is my total strain and

this is my thermal strain so, and this is equals to the mechanical strain which is this

quantity. So, now, the this actually proves my mechanical strain plus thermal strain is my

total strain. So, now, how does this alpha is derived that also is pillar.



So, C inverse beta if I write which is the alpha. Now, for an isotropic material alpha ij

alpha ij a this quantity is constant which is alpha delta ij. So, that means, the the three

direction it is alpha that is x direction coefficient of thermal expansion of solve it easy

alpha y direction is also alpha and z direction it is also alpha. Now, this thing you can be

use for an an isotropic material also alpha 1 in the one direction or x direction, alpha 2 in

the y direction, alpha 3 in the z direction this can happen. But, so, this if we if I write it in

a stress strain relation the stress strain relation becomes now this sigma is becoming C

into epsilon minus alpha into T minus T 0 which is essentially delta T. So, alpha delta T.

So, this is my final constitutive relation for the solids.

So, you see this total strain epsilon is a total strain here this is the total strain and alpha

delta T is my thermal strain. So, this quantity is essentially the elastic strain so, or the

mechanical strain. Now, for an isotropic material this can be easily observed this can be

easily observed.
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So, for instance here we can see this  isotropic material  which is alpha into delta the

thermal strain is alpha and delta ij. So, this is delta T and. So, I can write the compliance

relation that is strain versus stress relation and then from here actually we can get the

compliance relation for the thermo elastic material this is for the mechanical part or the

elastic part because we are essentially considering elastic material. So, this is the elastic

part  of the earth strain and this  is  the mechanical  total  strain which in  composed of



mechanical  strain  plus  thermal  strain.  So,  now, this  is  the  basic  introduction  of  the

Duhamel Neumann constitutive relationship of the thermo elastic material.
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Now, if you can you can modify this so, this is with this. So, if I substitute this ij k with

in the previous relation or this relation. So, epsilon kk I can get the expression for epsilon

kk which is this and then if I want to find out sigma kk so, I transfer it.  So, once I

transfer it, it looks like in this form then epsilon ij also I can do it and I can after some

manipulation after some manipulation I can convert  it  to the first Lame constant and

second Lame constant these I think already we have seen, that is mu and lambda; that mu

is the first Lame constant and mu is the shear modulus of the second Lame constant.

Now,  once  this  is  done  then  Duhamel-Neumann  relation  for  isotropic  constitutive

material or isotropic material is this. So, this is the compliance relation and this is the

constitutive relation. The constitutive relation you see in the thermal strain part there is a

3 lambda plus 2 mu, because this is how it has been derived. So, because this is this

quantity is essentially the beta that we are discussing in the previous slide and this is

alpha is the thermal coefficient thermal expansion coefficient. Now, this is the for the

isotropic. So, these can be modified for the an isotropic material as well.
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Now, if I now considered the basic energy conservation equation that is for a body with

thermo  elastic  energy  is  required.  So,  first  starting  point  is  the  first  law  of

thermodynamics. So, all of you must have studied the last of thermodynamics which is

the in a basic elementary notation will follow here and which is the d dt time derivative

of kinetic energy and the internal energy is equals to work done plus the heat flux q.

So, this or heat energy capital Q so, now, if the kinetic energy I know if I consider body

here these body and these is suppose d omega is the boundary and omega is the body and

then there is a normal here this normal and there is a heat flux the heat flux is also there.

So, now in a purely elastic place you do not have small q. So, there is a heat conduction

is happening. So, there is a q here and this body is with the mechanical loading some

mechanical loading is there and there is a heat flu[x]- heat conduction is also happen.

So, now these if I write the expression of the kinetic energy which is we know half of m

v square. So, which is may m is essentially we are consider in the mass density rho. So,

this  is my kinetic  energy and this  is  my the internal  energy going to internal  energy

density small epsilon is here internal energy density. So, this is integrated over the total

volume. So, this is my internal energy density and this is my the work done. Work done

is due to that could be a two force. There is a traction force here may be there is a

traction force here.



So, which is this traction we know that sigma dot in is t. So, this sigma ij n j into v is my

total  external work done due to the purely mechanical ruling and then this is my the

volume  volumetric  force  due  to  the  body  force  done  and  then  the  heat  energy  is

essentially this we have seen from the previous lecture that q n i is the heat flux in the

boundary. So, and rho h is the source term in prescribe source term within the body or

not heat maybe h maybe 0 h may not be 0. So, if there is a heat source then there is a heat

energy inside the body so, which is over the omega or capital omega inside the body.

Now, if I substitute these quantities here so, this looks like this. Now, if this will now this

will now see how this looks in a system.
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So, in a if I know do this operation and using the divergence theorem I can change this to

the volume; that means, the body. So, divergence theorem we have studied earlier which

actually converts the surface integral to a line integral or the line integral to a surface

integral and a volume integral to a surface integral. So, here a what we are doing is the

volume surface integral actually we are converting into a volume integral. So, now, this

if I use divergence theorem here and similarly that divergence theorem if I use so, I can

compute the volume integral. So, this is the expression for volume integral this all of you

know.

And, now you after some manipulation I just take the time derivative here. So, if I thus

take the time derivative so, it will do one of them will appear v dot and since there is a



half so, that will be observed and then the internal energy density will be time derivative.

So, this if I after some rearrangement I just form this. So, if you look carefully this first

term is essentially this quantity we have already seen. So, this is the equilibrium equation

that we have observed. So, this is nothing, but that sigma divergence of sigma plus F is

the body force is equals to rho rho u dot or u double dot or if u is the displacement then

acceleration.  So,  since  v  is  a  velocity.  So,  it  is  v  dot.  So,  this  is  essentially  your

equilibrium equation or the force balance.

So, this equation we have seen we have put 0 for static is here now this is the since we

are considering for general dynamical case. So, this will be the inertia term will be there.

So, now, this equation is essentially 0. So, this becomes so, now what is left is essentially

this quantity this quantity now. So, this quantity first term is 0, because it represents the

equilibrium equation and then the second term is essentially this quantity. So, after some

modification I can just now write this quantity that is internal energy derivative with

respect to other quantity. So, you see the first term is due to the your stress and then this

is due to the heat flux and this is the source term.
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So, now if I little bit modify this. So, this is my the final expression and now we have the

Fourier law of heat conduction which also you know we know which is for an isotropic

material heat flux q i is k into T comma i for an isotropic material. So, now, this Duhamel

Neumann relation we have studied just previously and from the basic thermodynamical



theory  where  considering  the  ideal  gas  approximation  we can  have  this  epsilon  dot

equals to c is the specific heat is the temperature derivative with respect to time.
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Now, if I just write it little for a stress free condition what does this stress free condition

means? That means, there is no sigma ij this term is not there. So, now, there this term is

there, but there is no mechanical strain so, only the thermal strain part will be there. So,

the which is coming from the Duhamel integration if you look from the previous case

this term this part will be 0. So, this part will be there. So, this there is no mechanical

strain path.

So,  now then this  is  coming  from the  heat  conduction  equation  that  is  Fourier  law.

Fourier this is k is the coefficient of conductivity and then rho h is the source term. Now,

if I after some rearrangement if you see these there is a couple term here and this is

coming this. So, where the alpha and epsilon strains even though there is a in the stress

free  conduction  there  is  a  strain  which  is  coupled  with  the  coefficient  of  thermal

expansion coefficient.

Now, here is the departure for our theory. What is that departure is that, we want to study

the uncoupled thermo elasticity here. Now, here this coupling is actually ah creating a

couple form of the thermo elastic equation now for a uncoupled system this quantity

must go. So, now, this if this term becomes 0 then we get the usual uncoupled elasticity.

Now, is if there is a no source term inside the body then this is might the energy equation



or the stress state. So, this is this a epsilon is actually the rate of internal energy which is

coming which is essentially c T dot from the basic thermo dynamical theory and then this

becomes the my final energy conservation equation.
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Now, so, in a general uncoupled formulation what are those things? The things are strain

displacement  relations  are  these  which  is  usual  that  we  know  from  the  elastic

deformation theory. Strain compatibility equation which is also we have studied earlier.

Equilibrium equation for a static case this is the equilibrium equation and that for the

here comes the speciality of thermo elastic constitutive relation. You see this quantity is

due to the mechanical this thing. So, this will be epsilon kk. So, and this part will be due

to the thermal stress part.

Now, the energy equation if there is a no source term so, if h equals to 0 which also we

have derived for a uncoupled form what will be the energy equation. So, as a whole we

have three displacement unknowns six strain components and six stress components and

the temperature unknown. So, total in a elasticity case there is another unknown which is

coming as temperature.

Now, for a uncouple thermo elasticity temperature will be generally given to you because

you are not actually solving the heat conduction equation or as if you solve the heat

conduction equation; that means, the thermo elastic or the Navier’s equation of elasticity

actually  you solve separately  and heat  conduction equation  or  the heat  equation  you



solve the separately. From the heat equation you get the T that is temperature distribution

of  the  body and  once  you  plug into  this  T into  the  Duhamel-Neumann  constitutive

relation  which  is  delta  T which  can  be  space  dependent;  that  means,  which  the  xy

variation can be accommodated here. So, this T once you get it from the heat equation

you can have the usual elastic problems usual elasticity problem, but thermal strain as an

additional strain there.

So, now this as a total you have 16 unknown where in the elasticity case you have total

15 unknown so, temperature unknown was not there. Now, in case of a it is important to

remember here in the couple thermo elasticity case you solve both the equation thermal

heat  equation  to  find out  the temperature  as well  as  the displacement  thermo elastic

displacement you solve both the equation together to get the distribution of displacement

and temperature.

But, in case of uncoupled elasticity you solves you solve sequentially or you get the

temperature  distribution  or  that  means,  the  temperature  our  first  assumption  in  the

beginning  of  the  slide  we  have  discuss  that  heat  conduction  does  not  change  the

properties of the material or does not affect the response of the material. So, if we follow

this thing then this term basically gives us the uncoupled elasticity, uncoupled thermo

elasticity.

So, finally, this becomes a 15 unknowns for the elasticity and one temperature unknown.

So, generally these temperature will be given to you and otherwise you can solve heat

equation in a body to get the temperature profile in a body. So, once you are done with

that then you solve the usual thermo elastic problem where temperature is an input to the

system and then you get  the  thermo elastic  response  in  terms  of  stresses  strain  and

displacement which is usual as per the ah previous our previous discussion.

So, I stop here. So, we will continue in the next class, where we will discuss some of the

specific cases for plane stress plane strain thermo elasticity.

Thank you.


