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Welcome. This is the last lecture of Thermo Elasticity, where we have planned to solve

some of the examples of thermal deformation or thermal stress. So, here what we have

done is we started with a general thermo elastic deformation or specifically the, we have

derived  the  energy  equations  and  showed  that  the  uncoupled  form  of  the  thermo

elasticity which again we have extended for plane stress and plane strain formulation.
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Then  we  finally,  used  some  well  known  approaches  like  stress  function  and  then

displacement  potential  function and then derived the by a  harmonic equation for the

plane stress and plane stress case.

So, here in this lecture what we will do we will study some of the simple cases of thermo

elastic deformation, where for instance let us consider a thermal stresses in a thin plate.

So,  consider  a  rectangular  thin  plate  and  then  the  with  uniform  thickness,  but  the

interesting thing is let us consider the temperature profile is a function of y only, it is not

a function of x and z and that leads to actually the thickness direction stress is constant

basically we can invoke the plane stress condition.



So, now if you look carefully that if I want to find out the thermal stress along x direction

considering that y direction is free. So, if you increase or if your thermal profile is T y

then the y direction is free to expand, but if I try to resist in the x direction stress or the

compressive stress essentially required to keep the plate from straining in x duration. So,

if I just keep this direction if I am not allowing this direction to freely expand then the

compressive  stress  essentially  alpha E and T essentially  delta  T. So,  T y is  my that

temperature variation.

Now,  this  is  this  stress  sigma  xx  dash  is  varying  along  y  direction  because  this

temperature profile is a function of y. Now, similarly the plate will experience thermal

stress. So, the thermal stress that is tensile; obviously, the opposite stress. This stress will

be generated in the plate has to be integrated from minus c to plus c and then for if we

divided per unit thickness, then this stress is integral of this quantity E into dy because

temperature profile is variable in y then per unit length unit thickness of the plate or unit

width of the plate.

So, now these two stresses xx and sigma xx double sigma xx dash and sigma xx double

dash should be balanced.  So, that is  that we can do in with the help of principle  of

superposition. So, now, using the superposition I can write this must be the total stress

along the x direction. So, now, if I put these two quantities so, this looks like this. So,

this is my total stress in the x direction which actually needs to be equilibrated. Now,

there  is  also  an  effect  of  you  have  probably  known this  thing  for  a  from previous

discussion that this is that at the end of the member there is a effect end effect which we

called. So, this stress is naturally not valid at the end of the body because we have so

called souvenir effect which is the end effect or the boundary effect of the system.

So, if it is sufficiently away from the end of system and end of the body then we can

express this sigma xx as this. Now, it is interesting to know if you have this alpha E T y.

So, if you know the temperature variation how T y is varied along y and so, you can find

out the stress and you can compute this stress at any cross section. So, now, let us see let

us assume some of the some stress some profile of the temperature are essentially and

then let us see how it looks like.



(Refer Slide Time: 06:13)

So,  let  us now consider  in  the temperature  varies  parabolically. So,  it  is  a parabolic

equation or something like that. So, now T 0 is the constant temperature and then how it

is varying along y. So, if you now put this T y and integrate into this equation, then you

get this expression; so, which is again a means variable in y square. So, if you see; that

means, the temperature the stress along this body varies is along y square. So, this from

which, we can calculate where the maximum stress occurs and where the minimum street

occurs. So, suppose that y equals to c; that means, at the surface then this, the value if I

write, so, this quantity goes to 0.

So, this stress is actually the positive stress or the tensile stress here in the body. So, this

is two third two third alpha ET 0. So, this stress we know now if at y equals to 0 then this

is two third alpha ET 0 minus alpha ET 0. So, this is now again the compressive stress.

So, because this quantity is greater than the later quantity is greater than this quantity. So,

this is essentially one third alpha E T 0.

So, now the, this part. So, this is this part essentially and this is this part. So, now, we can

see this is the compressive negative parts and this is the positive part of the stress. So,

this way we can find out the, what are the stresses in the body. So, if we assume the

temperature profile in this parabolically, what will be the stresses in the body? So, this is

very simple example by which we can understand the how temperature creates actually

the variation.



Now, here it is important to know that this when we apply the principle of superposition

we have applied only for the stress or the force actually, because this is the temperature

profile if you look it is symmetrical about the x axis. So, that means, this function is a

even  function.  So,  now,  if  this  is  unsymmetrical  now  this  temperature  profile  is

unsymmetrical then you have to consider the couple also the couple balance also you

have  to  form and  then  you  can  equate  with  the  equilibrium  and  using  principle  of

superposition then you can find out the what are the stress.

So, I recommend the, this part you can also go through in the Timoshenko book where

the thermal stress chapter this is already derived in there. So, this you can follow later.

Now, let us consider some of the other problems where actually we need to understand or

the problems are little more complicated.
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So, say instance for a thermal stress in a thin circular disk. Now, this disk is centered at

the inner radius say it is r equals to a and outer radius r equals to b then in the again if I

assume that temperature profile is a function of r only. So, there is no theta dependence

on the temperature.  So,  then again  since  the  disk we can  assume again  plane  stress

condition and then if we see that only sigma rr is the quantity that will actually be the

nonzero, but since the deformation will be symmetric this quantity that is sigma r theta

will be 0 essentially. And, then sigma theta will also be there, but sigma theta will be a



function of r only because there is no variation of the temperature in the theta direction;

so, because of this assumption.

So,  now, if  you  will  assume  in  the  polar  coordinate  system  what  is  the  governing

differential  equation  or  the  Navier’s  equation  then  you  get  these  quantities,  the  red

quantities  are  already zero.  So,  only this  quantity  and these partials  becomes a  total

derivative. So, this becomes this equation.

So, now similar to our previous case we know the strains in polar coordinate system, so,

this  there will  be u the radial  displacement  and the theta  direction displacement  is v

which will be 0 because the v is not a function of theta. So, if I write now this quantity

so, this will be the standard compliance relation that we know. So, only the thermal strain

part is added. Now, similar to since the r theta is 0 so, and so, this quantity will be 0 and

this quantity again u is u will be function of r only because from here we can see that u is

a function of r only. So, this quantity goes off this quantity also goes off and this quantity

also goes off. So, essentially shear strain is also 0 because it is a symmetric deformation.

So, there will be no shear strain generated.

Now, if we now put this compliance relation that is epsilon rr and epsilon theta theta and

then find out what is the constitutive relations or the stress strain relation and then again

we can sub substitute, this sigma theta theta and sigma rr into the into our governing

differential equation then we can get a final differential equation which is of in terms of u

and v only in terms of u.
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.

So, let us see what is that. So, this be[ome this does not become partial now because u is

a function of r only. And, then we write in the final expression for the strains in radial

direction and then theta direction and then we obtain the constitutive relations as you

make that plane stress condition. So, this quantity is my final stress expression. So, you

see this is very similar this thermal strain that we have discussed that will come into the

stress expression.

So, now, if I substitute epsilon r r and epsilon theta theta here the stress = components

look like this. Now, if we again substitute here this equation then this equation becomes a

second  order  partial  differential  equation.  Now,  if  you  look  carefully  this  type  of

differential  we  have  studied  earlier.  So,  this  is  the  simple  case,  but  this  type  of

deformation we have seen in terms of displacement potential function.
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So, if you remember that this displacement potential function this del psi this is very

similar this equation is very similar to this equation you see in a plane this is for plane

stress condition. Now, what we did actually there we integrated this equation and to and

make it one single equation. So, here before that integration this equation is very much

similar in the polar coordinate system, this is in a Cartesian coordinate system.

Now, so, the fact is we are following the same approach here. So, now how to solve this

equation? So, the solution of this second order differential equation we can easily obtain

by this.
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And, the solution is of this form. So, here the displacement is a function of r only since

we do not know what is the profile of T. So, that integration we cannot perform so, it is a

function of T r only. So, now, there is two integration constant and C 1 and C 2. So, now,

if I write my stress quantities sigma rr and sigma theta theta then these stress quantities

will be in terms of C 1 and C 2.

Now, since this C 1, C 2, C 1 and C 2 we have to find out from a appropriate boundary

condition. Now, based on certain boundary condition we can find out C 1 and C 2 for

instance if there is a solid disk the disk is solid then there is a boundary condition and if

there is a disk with a whole that is r equals to a there are some stresses and r equals to say

r equals to b the outer radius of the disk then there are certain boundary conditions. So, if

we substitute those boundary condition then we can get the appropriate C 1 and C 2

value and then we can calculate the stresses.
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So, for instance that if that if we consider a simple solid disk then that is a equals to 0

and then b is the radius of the disk then if you look at this quantity. So, this quantity 1 by

r 0 to r; r equals to b here. So, this r equals to if I take b then Tr dr this quantity if I tends

r tends to 0 then this quantity becomes 0. So, this implies  that this cannot be in the

displacement solution or C 2 can be 0. So, u r should be free from the constants. So, this

limit you can evaluate and then see that these goes to 0.

So, now if there is a solid disc there is no surface boundary condition surface traction

here. So, only the temperature rise. So, there is no external force then sigma rr b must be

0, so, that is at r equals to b. So, this is r equals to b. So, if we put that then we can find

out C 1 what is the value of C 1. So, now, then we can substitute this in the previous

stress expression to get the surface temperature what is that and that leads to finally,

there is a constant temperature at the centre. So, this constant temperature can be 0 also.

So, this way we can solve some of the systems analytically.
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So, for instance, if we look another problem say a sphere of a thermal stress in a sphere;

so, which is a 3-dimensional body. So, if I look in this way; so, now, from here there is a

if I take a element. So, there is a tangential  stress sigma tt in this direction and then

sigma tt in this direction. So, this has to be balanced and then this quantity if I take sigma

r here sigma rr and then this is again sigma rr plus delta sigma rr. So, this is the only

stresses we will observe. So, again if we put this thing in the differential equation of 3-

dimensional elasticity then we get this simple formulation simple differential equation of

this from similar to the previous case.

Now, here  again  you  I  have  we  have  a,  we  are  assuming  that  T  is  a  function  of

temperature  is  a  function  of  r  only.  So,  there  is  no  tangential  dependence  of  the

temperature now similar to the previous case we get the du dr is radial direction strain

and then epsilon tangential direction strain will be only u by r. So, finally, you get this

form of the compliance relation.

And, then again likewise in the previous case if we substitute these compliance relation

to the or if we find out the stress strain relation then this looks this form. So, now again if

we solve this if we put this equation here then we get a differential equation in terms of u

and then we can solve this differential equation and again there is a boundary condition

by which we can find out the constant like previous case.

So, let us see how it turns out.
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So, for instance if I just substitute that, so, I will get a differential equation which is also

if you remember for a plane stress a plane strain case we get similar type of equation. So,

now, even though this is a 3D problem. So, this is if I solve this so, I get a solution in

terms of two constant because it is a second order differential equation. So, now again if

I put in terms of stresses in terms of stresses so, this C 1 and C 2 will appear in the stress

expression.
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So, now, again likewise in the previous case if I assume it is a solid disk. So, then my this

limit goes to 0, then again C 2 can be 0. So, this quantity I can remove from the body. So,

this quantity I can remove from displacement expressions. So, now, once if I assume

there is a solid disk. So, there is that means, a equals to 0 essentially so, here if I put r

equals to b or there is a that outer radius is b and then the outer radius or the radius of the

sphere is  b,  then considering again likewise in the previous case in the traction free

boundary r equals to b that C r sigma rr has to be0. So, this gives me the constant C 1.

So, now, once we know this one and then we can write the stress expression what will be

the form of the stress expression.
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So, stress expression will be like this and tangential and radial stress expression. Now,

suppose we have a sphere which is uniformly heated from T 0 to T 1. Now, this sphere

this can be liquid or anything means the heating through the liquid or any external heat

source.  So,  if  the temperature is  maintained T 1 degree then we can show from this

expression that my stresses varies sigma rr sorry, the maximum stress can be this and

which is the compressive stress maximum compressive stress occur at the surface. And,

so, T 0 is my initial cold temperature and T 1 is my the temperature which is higher of

the higher than T 0. So, this gives me a compressive stress at the maximum compressive

stress at the surface.



So,  in  this  way  we  can  solve  some  of  the  simple  problems  of  thermo  elasticity

analytically. Now, again I want to say that we have done the theory of thermoelasticity

what  are  the  governing  differential  equation,  what  are  the  plane  stress  governing

differential  equation,  plane  strain  governing differential  equation  and we used stress

function likewise for the purely elastic case we use ela[stic]- stress function approach.

So, in the thermo elastic case also we have shown displacement functional approach. So,

this can be assuming some displacement potential functions like psi we can solve those

differential equation.

But, most of the solution even for the simple cases will be very analytically complicated.

So, for ours this our objective is not to form this analytical expression rather we want to

solve this equations in a numerical setup, where we use our numerical tools for instance

the finite element method finite difference method or even mesh free method or even

other collocation type of method where we just discretize those differential equation in

space and then we solve the differential equation like in the finite element method we

solve for a Navier’s equation of elasticity.

Now, there  are  two  –  three  things  that  has  to  be  remembered  for  the  thermoelastic

deformation that we are following a uncoupled thermoelasticity, where actually we do

not solve the heat equation with the naviers equation of elasticity rather we follow the

Duhamel Neumann Duhamel Neumann constitutive relation and we separately get the

temperature distribution and then put those temperature into the Navier’s equation to

solve the system.

Now, there are problems or there are type of problems where this uncoupled form of

thermo elasticity is applicable, but most of the civil engineering structure and that linear

regime; linear regime means where the deformation is small. So, this uncoupled form of

the thermo electricity is applicable, but since the differential equation or the analytical

solution  is  very  difficult  we  go  for  the  approximate  solution  through  different

approximate methods. So, that is another part of that.

Now, the other part of the thermo elastic deformation is actually we can even model the

residual stresses of a body through the thermo elastic formulation. For instance, if you

when the steel  members we receive  it  consists  from the mill  it  contains  the residual

stresses essentially. So, what is residual stress? Residual stress or essentially the initial



stress in the body. B ecause the milling process gives you some permanent deformation

which is embedded into the members.

So, this this residual stress can be very important in a member where actually if you have

a crack or something some damage in the life span of the in the lifespan of the member

then this  damage and crack propagate very differently if it  has inbuilt  residual stress

while coming out from the mill. So, this thermo elastic deformation can also model this

residual stress model.  So, this  goes to a again the advanced topic which we will not

discuss here so, but it is important it is important to know here that even though residual

stress that can be modeled with the same equation of this thermo elastic deformation the

equations which is essentially applicable for the thermo elastic deformation.

And, another important part is that even if you look this differential equation this goes to

this acts as a body force in the body. So, if you if you if you remember the Navier’s of

Navier’s equation of elasticity which is sigma del divergence of stress plus b or f equals

to 0. So, this if this contains a thermo elastic deformation which is in terms of alpha delta

T for an isotropic material. So, this essentially goes to the this side. So, if I again write

this if this if my thermo elastic constitutive relation is this c is a my constitutive matrix

then epsilon is my total strain then epsilon is my thermal strain.

So, then this if I substitute and if I take body force is 0, then we can easily show that this

term c epsilon, so, divergence of sigma c epsilon is essentially. So, this is inner product

of 2 tensor. So, this goes to this, so, divergence of c into epsilon star. So, this epsilon star

is the thermal strength. So, these this if I say this is my residual stress or sigma 0. So,

which is if I know then this problem can be so, residual elastic strain is developed in the

body. So, essentially this part is the body force which acts on the differential equation.

So, that is all.

We have solved our objective of this module was to solve some of the to know the first

the theory of thermo elasticity and which is the uncouple thermo elasticity specially and

then we did some of the plane stress plane strain formulation and then we have solved

some of  the  analytical  examples  by which  we can  solve  some simple  problem with

simple geometry and boundary condition. But, major emphasis is actually the solution of

this equation are mainly done with the approximate methods because analytical methods

we have several difficulties in obtaining this analytical functions of the displacement.



So, that is all for this module. In the next module we will start another aspect of the

elasticity  which  is  very  similar  to  the  experimental  stress  analysis  is  known  as  the

photoelasticity.

Thank you.


