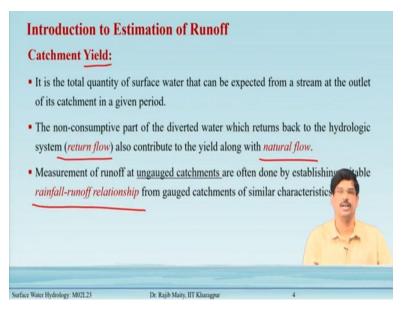

Surface Water Hydrology Professor Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture – 23 Estimation of Runoff Volume: Empirical Models

In lecture number 23 we are considering the Estimation of Runoff Volume: empirical model; some of the empirical models

(Refer Slide Time: 00:58)

We are covering different types of runoff models and then mainly we are focusing on empirical models for runoff estimation in this particular lecture.


(Refer Slide Time: 01:14)

The outline of this lecture goes like this; introduction to the estimation of runoff, then types of models for runoff volume estimation. So, the outline of this lecture goes like this. First, we will give some introduction to the estimation of runoff, then different types of models for runoff volume estimation.

So, under these empirical models, linear regression, Binnie's percentage, Barlow's table, Inglis and DeSouza Formula. Then, one department of irrigation, India formula, and Lacey's formula we will cover; and then we summarize the lecture.

(Refer Slide Time: 02:01)

Introduction to Estimation of Runoff

Catchment Yield:

It is the total quantity of surface water that can be expected from a stream at the outlet of its catchment in a given period of time. Generally, if we consider that time to be one year, then it is the annual yield from the catchment. So, some non-consumptive parts of the diverted water return to the hydrologic system, which is called the return flow.

So, return flow also contributes to the yield along with the natural flow. So, that is supposed to come, and then the water that has been diverted for some different use for irrigation, or the industrial purpose, or domestic purpose that also come comes back and join. So, these two are together considered in the catchment yield. Now, these things are very useful, particularly for the ungauged catchment.

Sometimes we can develop some sort of rainfall and runoff relationship from some gauged catchment, and then other catchments which are of similar characteristics; then using that

rainfall-runoff relationship, we can utilize that one to find out the yield for the new ungauged catchment. But the condition is that it should have some similar hydrometeorological characteristics.

(Refer Slide Time: 03:27)

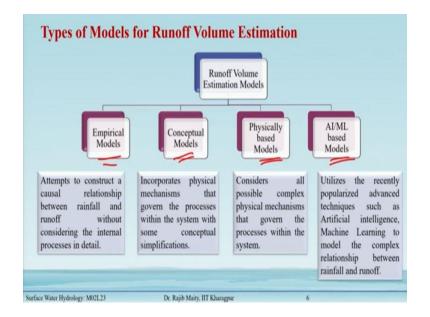
Yield can be express	ed by water balance equation as
	$Y = R_N + V_r = R_o + A_b + \Delta S$
where,	0
R_N = Natural flow i	n time Δt ,
V_r = Volume of retu	rn flow,
	off volume at the outlet gauging station in time Δt ;
A_b = Abstraction in water bodies on the	time Δt inclusive of evaporation losses in surface he stream;
ΔS = Change in the stream.	e storage volumes of water storage bodies on the

Now, to obtain the yield, this yield generally can be calculated from the water balance equation;

$$Y = R_N + V_r = R_o + A_b + \Delta S$$

where,

 R_N = Natural flow in time Δt ,


 V_r = Volume of return flow;

 R_o = Observed runoff volume at the outlet gauging station in time Δt ;

 A_b = Abstraction in time Δt inclusive of evaporation losses in surface water bodies on the stream;

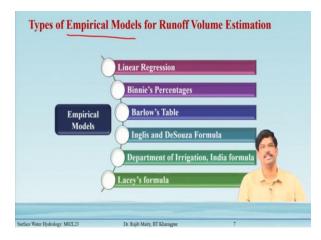
 ΔS = Change in the storage volumes of water storage bodies on the stream.

(Refer Slide Time: 04:49)

Types of Models for Runoff Volume Estimation

Now, there are different types of models available from which we can estimate the runoff, and broadly this can be categorized into four groups. The first one is the empirical model and then comes the conceptual model, then the physically-based model; and finally, more recently popularized artificial intelligence or machine learning-based abbreviated as AI/ML-based models.

Empirical Models: Attempts to construct a causal relationship between rainfall and runoff are considered. However, we do not consider the internal process in that much detail. We somehow try to establish some relationship; these are empirical models, so, it comes with the proper unit also. Sometimes, some of the empirical models are applicable only for that region itself. So, if we want to utilize it in some other region, some other parts of the world; then it needs to be properly calibrated again.


Conceptual Models: It is not as simplified as the empirical model; at the same time it is not as detailed as the physically-based model. So, under this conceptual model, it incorporates the physical mechanism that governs the process within the system. However, these processes are highly simplified. Sometimes it has been seen that even if these processes are simplified, it gives

a reasonably good; or sometimes even much acceptable result as compared to the other models where the competition is highly intensive.

Physically-based Models: It is one of the computationally demanding models groups. Here are all the possible complex physical mechanisms that govern the process within the system that is considered. And it has different types like that, whether the time variation or the special variation, they sometimes considered.

AI/ML-based Models: In the last category that AI/ML-based model, it generally utilized the recent, it is recently popularized; and these are some advanced techniques such as artificial intelligence and machine learning. Under this also there, there are different categories are there; and it helps to model the complex relationship between rainfall and runoff. So, sometimes it is found to be very fruitful. However, one thing is that it needs to be calibrated again and again for different catchments. And sometimes it needs to be calibrated over time also, or after sometime when the catchment characteristics have been changed; which is true for the other models such as empirical and the conceptual models also.

(Refer Slide Time: 07:31)

Types of Empirical Models for Runoff Volume Estimation

- Linear Regression
- Binnie's Percentages
- ➢ Barlow's Table

- Inglis and DeSouza Formula
- Department of Irrigation, India formula
- ➢ Lacey's formula

(Refer Slide Time: 08:08)

 Empirical Models: Linear Regression The most common empirical method for runoff volume estim runoff values (<i>R</i>) with the corresponding rainfall (<i>P</i>) values. Linear regression relationship is established between R and P. 	
correlation is found. R = aP + b where, <i>a</i> and <i>b</i> are regression parameters. These can be estimated through least square method. Expressions are as follows: $a = \frac{N(\sum PR) - (\sum P)(\sum R)}{N(\sum P^2) - (\sum P)^2}$ $b = \frac{\sum R - a(\sum P)}{N}$	90 (a), b), b), b), b), b), b), b), b), b), b
where, N is total number of data points considered. Surface Water Hydrology: M02L23 Dr. Rajib Maity, IIT Kharagpur	8

Empirical Models: Linear Regression

The most common empirical method for runoff volume estimation is to correlate the runoff values (R) with the corresponding rainfall (P) values. Linear regression relationship is established between R and P and accepted if the desired correlation is found.

$$R = aP + b$$

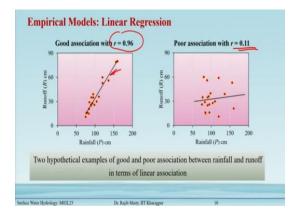
where, a and b, these are the regression parameters;

These can be estimated through the least square method. Expressions are as follows:

$$a = \frac{N(\sum PR) - (\sum P)(\sum R)}{N(\sum P^2) - (\sum P)^2} \qquad b = \frac{\sum R - a(\sum P)}{N}$$

where *N* is the total number of data points considered.

(Refer Slide Time: 09:43)


However, it must be noted that this simple linear relationship between P and R is only accepted if the correlation coefficient (r) between P and R is reasonably good. The expression for r between P and R is given by

$$r = \frac{N(\sum PR) - (\sum P)(\sum R)}{\sqrt{[N(\sum P^2) - (\sum P)^2][N(\sum R^2) - (\sum R)^2]}}$$

The correlation coefficient (r), which indicates the degree of linear association between two variables, ranges between -1 and 1. However, in the case of the rainfall-runoff relationship, we expect a positive association.

Value of r close to 0 indicates no association between the variables and close to unity indicates perfect linear association. Hence, if the value of r > 0.6, it may be considered a good correlation in the case of rainfall-runoff relation.

(Refer Slide Time: 11:23)

One pictorial example that you can see on the left-hand side of fig.1. These red dots are showing the pairs of rainfall and this runoff; and we fit the linear regression model, which is shown by this black straight line. And here this type of scattering may be an indication or maybe one just example that r equals 0.96, which is close to 1. Whereas, on the right-hand side of fig.1, r is very close to very less close to 0, which is 0.11; so, the scatter part you can just take. So, on the left-hand side whatever the model is there, that is more acceptable than what is there on the right-hand side.

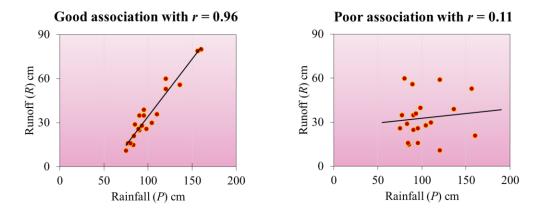


Fig.1 shows the two hypothetical examples of good and poor association between rainfall and runoff in terms of linear association

(Refer Slide Time: 12:11)

• For large catchments,	s: Linear Regression exponential relationship has been for	ound to be me	ore accurate, given
 This exponential equation form by logarithmic t In(R) = Then the coefficients 	where, β and m are constant uation is first reduced to its linear ransformation as follows, $m(n(P) + (n(\beta)))$ m and $n(\beta)$ can be estimated usin mentioned in the previous slides.	(II K)	n p 100
iurface Water Hydrology: M02L23	Dr. Rajib Maity, IIT Kharagpur	11	

For large catchments, the exponential relationship is more accurate, given by

$$R = \beta P^m$$

where β and m are constants

This exponential equation is first reduced to its linear form by logarithmic transformation as follows,

$$ln(R) = m ln(P) + ln(\beta)$$

Then the coefficients m and $ln(\beta)$ can be estimated using a similar procedure as mentioned in the previous slides.

(Refer Slide Time: 13:34)

Annual rainfall (P) and runoff (R) values of a catchment spanning a period of 20 (1995-2014) are given below. A) Develop a linear regression relationship between a rainfall and runoff. B) Use the relationship to estimate the runoff from the given a rainfall value of next 6 years (2015-2020) period.							
(ear	Annual Rainfall (cm)	Annual Runoff (cm)	Years	Annual Rainfall (cm)	Annual Runoff (cm)	Year	Annual Rainfall (cm)
995	90	35	2005	83	15	2015	190
996	120	60 🗸	2006	110	36	2016	71
997	85	29	2007	77	16	2017	175
998	84	21	2008	93	28	2018	100
999	95	35	2009	136	56	2019	69
2000	160	80	2010	156	79	2020	101
2001	90	25	2011	89	26		
2002	95	39	2012	80	16		
2003	75	11	2013	120	53		
	104	30	2014	98	26		

Example

Annual rainfall (P) and runoff (R) values of a catchment spanning a period of 20 years (1995-2014) are given below. A) Develop a linear regression relationship between annual rainfall and runoff. B) Use the relationship to estimate the runoff from the given annual rainfall value of the next 6 years (2015-2020) period.

Year	Annual Rainfall (cm)	Annual Runoff (cm)	Years	Annual Rainfall (cm)	Annual Runoff (cm)	Year	Annual Rainfall (cm)
1995	90	35	2005	83	15	2015	190
1996	120	60	2006	110	36	2016	71
1997	85	29	2007	77	16	2017	175
1998	84	21	2008	93	28	2018	100
1999	95	35	2009	136	56	2019	69
2000	160	80	2010	156	79	2020	101
2001	90	25	2011	89	26		
2002	95	39	2012	80	16		
2003	75	11	2013	120	53		
2004	104	30	2014	98	26		

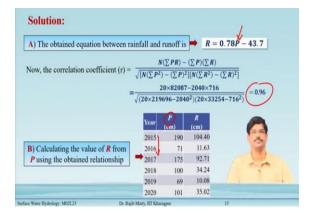
(Refer Slide Time: 14:28)

íear	Р (ст)	<i>R</i> (cm)	P2	R ²	P×R
1995	90	35	8100	1225	3150
1996	120	60	14400	3600	7200
1997	85	29	7225	841	2465
1998	84	21	7056	441	1764
1999	95	35	9025	1225	3325
2000	160	80	25600	6400	12800
2001	90	25	8100	625	2250
2002	95	39	9025	1521	3705
2003	75	11	5625	121	825
2004	104	30	10816	900	3120

Solution: Equation of \Rightarrow R = aP + bregression line **P**×**R** (cm) (cm) $a = \frac{N(\sum PR) - (\sum P)(\sum R)}{N(\sum P^2)}$ 6889 225 $N(\sum P^2) - (\sum P)^2$ $=\frac{20\times82087-2040\times716}{20\times210696-2040^2}=0.78$ $20 imes 219696 - 2040^2$ $b = \frac{\sum R - a(\sum P)}{N}$ 716 - 0.7795 × 2040 -43.7 2013 120 2014 98 SUM 2040 716 219696 33254 82087 Surface Water Hydrology: M02L23 Dr. Rajib Maity, IIT Khar

Solution:

Year	<i>P</i> (cm)	<i>R</i> (cm)	P ²	<i>R</i> ²	P×R	Year	<i>P</i> (cm)	<i>R</i> (cm)	P ²	<i>R</i> ²	P×R
1995	90	35	8100	1225	3150	2005	83	15	6889	225	1245
1996	120	60	14400	3600	7200	2006	110	36	12100	1296	3960
1997	85	29	7225	841	2465	2007	77	16	5929	256	1232
1998	84	21	7056	441	1764	2008	93	28	8649	784	2604
1999	95	35	9025	1225	3325	2009	136	56	18496	3136	7616
2000	160	80	25600	6400	12800	2010	156	79	24336	6241	12324
2001	90	25	8100	625	2250	2011	89	26	7921	676	2314
2002	95	39	9025	1521	3705	2012	80	16	6400	256	1280
2003	75	11	5625	121	825	2013	120	53	14400	2809	6360
2004	104	30	10816	900	3120	2014	98	26	9604	676	2548
						SUM	2040	716	219696	33254	82087


Equation of regression line

R = aP + b

$$a = \frac{N(\sum PR) - (\sum P)(\sum R)}{N(\sum P^2) - (\sum P)^2}$$

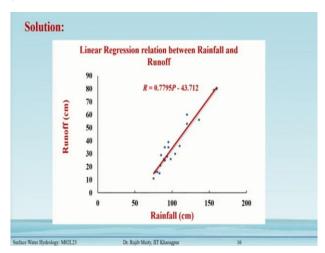
= $\frac{20 \times 82087 - 2040 \times 716}{20 \times 219696 - 2040^2} = 0.78$
$$b = \frac{\sum R - a(\sum P)}{N}$$

$$=\frac{716-0.7795\times2040}{20}=-43.7$$

(Refer Slide Time: 15:30)

A) The obtained equation between rainfall and runoff is

$$R = 0.78P - 43.7$$


Now, the correlation coefficient (r)

$$\frac{N(\sum PR) - (\sum P)(\sum R)}{\sqrt{[N(\sum P^2) - (\sum P)^2][N(\sum R^2) - (\sum R)^2]}}$$
$$= \frac{20 \times 82087 - 2040 \times 716}{\sqrt{(20 \times 219696 - 2040^2)(20 \times 33254 - 716^2)}} = 0.96$$

B) Calculating the value of \boldsymbol{R} from \boldsymbol{P} using the obtained relationship

Year	<i>P</i> (cm)	<i>R</i> (cm)
2015	190	104.40
2016	71	11.63
2017	175	92.71
2018	100	34.24
2019	69	10.08
2020	101	35.02

(Refer Slide Time: 16:11)

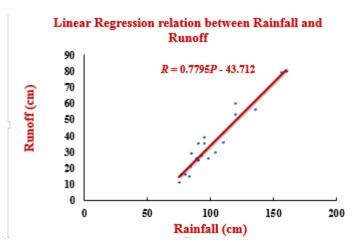
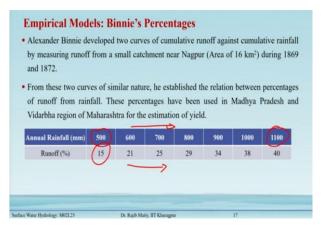



Fig. 2 shows the Linear Regression relation between Rainfall and Runoff

(Refer Slide Time: 16:25)

Empirical Models: Binnie's Percentages

Alexander Binnie developed two curves of a cumulative runoff against cumulative rainfall by measuring runoff from a small catchment near Nagpur (Area of 16 km2) during 1869 and 1872.

From these two curves of similar nature, he established the relation between percentages of runoff from rainfall. These percentages have been used in the Madhya Pradesh and Vidarbha regions of Maharashtra for the estimation of yield.

Annual Rainfall (mm)	500	600	700	800	900	1000	1100
Runoff (%)	15	21	25	29	34	38	40

(Refer Slide Time: 17:37)

Afte runo	irical Models: Ba r studying small catchm ff <i>R</i> in terms of precipita f Barlow's Runoff Coefficier	ents (area tion <i>P</i> as:	$\sim 130 \text{ km}^3$ $R = K_b$	P whe	Pradesh, Barlow expressed ere K_b = Runoff coefficient ge)
Class	Description of Catalanant	Values o	of K _b (in per	centage)	
Class	Description of Catchment	Season 1	Season 2	Season 3	Season 1: Light rain, no heavy
A	Flat, cultivated and absorbent soils	7	10	15	downpour Season 2: Average or varying
в₩	Flat, partly cultivated, stiff soils	12 🗸	15	18	rainfall, no continuous downpou Season 3: Continuous downpour
С	Average catchment	16	20	32	
D	Hills and plains with little cultivation	28	35	60	
E	Very hilly, steep and hardly any cultivation	36	45	81	

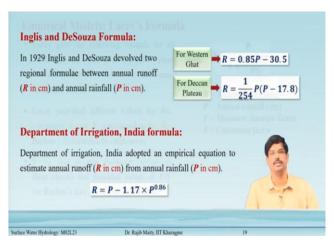
Empirical Models: Barlow's Table

After studying small catchments (area ~130 km²) in Uttar Pradesh, Barlow expressed runoff R in terms of precipitation P as:

$$R = K_b P$$

where K_b = Runoff coefficient

Values of Barlow's Runoff Coefficient *K*^b for Uttar Pradesh (in percentage)


Class	Description of Catalyment	Values o	of K _b (in per	centage)
Class	Description of Catchment	Season 1	Season 2	Season 3
А	Flat, cultivated and absorbent soils	7	10	15
В	Flat, partly cultivated, stiff soils	12	15	18
С	Average catchment	16	20	32
D	Hills and plains with little cultivation	28	35	60
Е	Very hilly, steep and hardly any cultivation	36	45	81

Season 1: Light rain, no heavy downpour

Season 2: Average or varying rainfall, no continuous downpour

Season 3: Continuous downpour

(Refer Slide Time: 19:39)

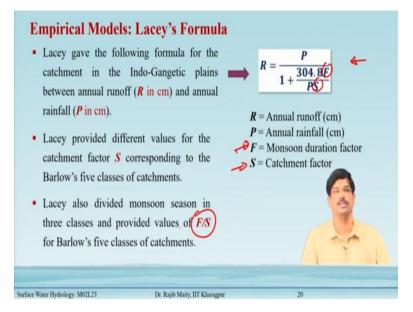
Inglis and DeSouza Formula:

In 1929 Inglis and DeSouza devolved two regional formulae between annual runoff (R in cm) and annual rainfall (P in cm).

For Western Ghat

$$R = 0.85P - 30.5$$

For Deccan Plateau


$$R = \frac{1}{254} P(P - 17.8)$$

Department of Irrigation, India formula:

Department of irrigation, India adopted an empirical equation to estimate annual runoff (R in cm) from annual rainfall (P in cm).

$$R=P-1.17\times P^{0.86}$$

(Refer Slide Time: 21:08)

Lacey gave the following formula for the catchment in the Indo-Gangetic plains between annual runoff (R in cm) and annual rainfall (P in cm).

$$R = \frac{P}{1 + \frac{304.8F}{PS}}$$

Where, R = Annual runoff (cm)

P = Annual rainfall (cm)

F = Monsoon duration factor

S = Catchment factor

Lacey provided different values for the catchment factor S corresponding to Barlow's five classes of catchments. Lacey also divided monsoon season into three classes and provided values of F/S for Barlow's five classes of catchments.

(Refer Slide Time: 22:20)

Values of	Catchn	nent Fa	ctor (S)			
Barlow's Catchment Class	A	В	с	D	E	
Value of S	0.25	0.60	1.00	1.70	3.45	
Val	ues of I	7/S Rati				
Class of Monsoon			s Catchm			
	A	B	С	D	E	134
Very Short	2.00	0.83	0.50	0.23	0.14) 3
Standard Length	4.00	1.67	1.00	0.58	0.28	()
Very long	6.00	2.50	1.50	0.88	0.48	

Empirical Models: Lacey's Formula

Values of Catchment Factor (S)

Barlow's Catchment Class	A	B	С	D	E
Value of S	0.25	0.60	1.00	1.70	3.45

Values of *F/S* Ratio

Class of Morecorr		Barlow's	Catchm	ent Class	
Class of Monsoon	A	В	С	D	E
Very Short	2.00	0.83	0.50	0.23	0.14
Standard Length	4.00	1.67	1.00	0.58	0.28
Very long	6.00	2.50	1.50	0.88	0.48

(Refer Slide Time: 23:03)

rature data for various catchments in India and USA. $\underline{R_m = P_m - L_m}$ $ret(L_p = 0.48 T_m \text{ for } T_m > 4.5^{\circ}C For T_m \le 4.5^{\circ}C. \bullet$	
$1 = 0.49T$ for $T > 4.5°C$ For $T_m \le 4.5°C$.	
$L_m = 0.48 T_m 10 T_m > 4.5 C$ $L_m can be assumed as$	
= monthly runoff (cm) and $R_{-} \ge 0$	
= monthly rainfall (cm) T_{m} (°C) L_{m} (cm)	40
	3
	3.
catchment (°C) -6.5 1.52	m
= monthly losses (cm) = mean monthly temperature of the catchment (°C)	and I

Empirical Models: Khosla's Formula

In 1960, Khosla presented an empirical formula by studying the rainfall, runoff, and temperature data for various catchments in India and USA.

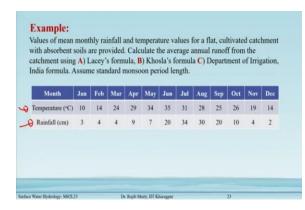
$$R_m = P_m - L_m$$

where $L_m = 0.48 T_m$ for $T_m > 4.5^{\circ}C$

 $R_m = monthly \ runoff \ (cm) \ and \ R_m \geq 0$

 $P_m = monthly rainfall (cm)$

 $L_m = monthly losses (cm)$


 T_m = mean monthly temperature of the catchment (°C)

For $T_m \leq 4.5^{\circ}C$, L_m can be assumed as

T_m (°C)	L_m (cm)
4.5	2.17
-1	1.78
-6.5	1.52

It may be noted that the Maximum value of $L_m = P_m$

(Refer Slide Time: 24:32)

Example:

Values of mean monthly rainfall and temperature values for a flat, cultivated catchment with absorbent soils are provided. Calculate the average annual runoff from the catchment using **A**) Lacey's formula, **B**) Khosla's formula **C**) Department of Irrigation, India formula. Assume standard monsoon period length.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature (°C)	10	14	24	29	34	35	31	28	25	26	19	14
Rainfall (cm)	3	4	4	9	7	20	34	30	20	10	4	2

(Refer Slide Time: 25:10)

Solution: A) Lacey's formula Annual rainfall = 3 + 4 + 4 + 9 + 7 + 20 + 34 + 30 + 20 + 10 + 4 + 2 = 147 cm It is a flat, cultivated catchment with absorbent soils, i.e Barlow's catchment class Duration of monsoon period is assumed to be standard, so the value of factor F/S for catchment *class* A = 4.00Using Lacey's formula value of annual runoff P 147 304.8×4 (147) 15.81 cm 304.8F 1+ PS m- M021 23

Solution:

A) Lacey's formula

Annual rainfall = 3+4+4+9+7+20+34+30+20+10+4+2=147 *cm*

It is a flat, cultivated catchment with absorbent soils, i.e Barlow's catchment class A.

Duration of monsoon period is assumed to be standard, so the value of factor F/S for catchment class A = 4.00

Using Lacey's formula value of annual runoff

$$R = \frac{P}{1 + \frac{304.8F}{PS}} = \frac{147}{1 + \frac{304.8 \times 4}{147}} = 15.81 \text{ cm}$$

So the value of annual runoff from the catchment = 15.81 cm

(Refer Slide Time: 26:04)

B) Khosla's As all the m for loss calc Monthly	ean mulation	onthly $n = L$	m = 0	. 48 7	m for				4.5°C	the a	applica	able fo
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature (°C)	10	14	24	29	34	35	31	28	25	26	19	14
Rainfall (cm)	3	4	4	9	71	20	34	30		10	4	2
L _m (cm)	3	4	4	9	71	16.80	14.88	13.44	12	10	4	2
	0	0	0	0	0	3 20	10.12	16.56	8	0	0	0

B) Khosla's formula

As all the mean monthly temperature values are greater than 4.5° C, the applicable formula for loss calculation =

$$L_m = 0.48 T_m$$
 for $T_m > 4.5^o C$

Monthly $runoff = R_m = P_m - L_m$

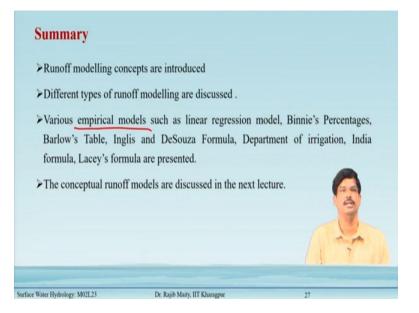
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature (°C)	10	14	24	29	34	35	31	28	25	26	19	14
Rainfall (cm)	3	4	4	9	7	20	34	30	20	10	4	2
L_m (cm)	3	4	4	9	7	16.80	14.88	13.44	12	10	4	2
R_m (cm)	0	0	0	0	0	3.20	19.12	16.56	8	0	0	0

So the value of annual runoff from the catchment = $\sum \mathbf{R}_{m} = 46.88$ cm

(Refer Slide Time: 27:46)

Solution:		
C) Department of Irrig		
Annual rainfall = $3 + 4$	+ 4 + 9 + 7 + 20 + 34 + 30 + 2	$0 + 10 + 4 + 2 \neq 147 \ cm$
Annual runoff = $R = R$	$P - 1.17 \times P^{0.86}$	\sim
R = 1	$P - 1.17 \times P^{0.86}$ 47 - 1.17 × 147 ^{0.86} = 61.47 cm	n
	runoff from the catchment = 61.47	
		3
		(in
Water Hydrology: M02L23	Dr. Rajib Maity, IIT Kharagpur	26

C) Department of Irrigation, India formula


Annual rainfall = 3+4+4+9+7+20+34+30+20+10+4+2=147 *cm*

Annual runoff =

$$R = P - 1.17 \times P^{0.86}$$

 $R = 147 - 1.17 \times 147^{0.86} = 61.47$ cm

So the value of annual runoff from the catchment = 61.47 cm

(Refer Slide Time: 28:15)

Summary

In summary, we learned the following points from this lecture:

- Runoff modeling concepts are introduced
- > Types of runoff modeling i.e., empirical and conceptual modeling are discussed.
- Various empirical models such as linear regression model, Binnie's Percentages, Barlow's Table, Inglis and DeSouza Formula, Department of irrigation, India formula, Lacey's formula are presented.
- > The conceptual runoff models are discussed in the next lecture.