Surface Water Hydrology Professor Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture – 24 Estimation of Runoff Volume: Conceptual Models

In this specific lecture-24, we are discussing the different conceptual models for the estimation of runoff volume.

(Refer Slide Time: 00:41)

We will be covered in this lecture; the concept of the models for runoff estimation. And two things that we will cover, the watershed simulation as a general approach, what is generally utilized in the conceptual model. And then a specific model which is known as the Soil Conservation Services Curve Number is SCS-CN method will be utilized in this.

(Refer Slide Time: 01:06)

The outline goes like this, introduction to the conceptual model for runoff estimation. And under these two types, one is that watershed simulation, which is a general approach of course; and there are many modeling schemes follow this one. Then the Soil Conservation Service-Curve Number method; There are other types of models are also there, that will just briefly touch upon and then summary.

(Refer Slide Time: 01:43)

In today's lecture, we are considering this conceptual model mainly; and some brief descriptions also will be given for this physically-based model and AI/ML-based model.

(Refer Slide Time: 02:00)

Conceptual Models

Under this category, we are discussing here only two models which are popular

- I. Watershed Simulation: Standard Watershed Model (SWM)
- II. Soil Conservation Services-Curve Number Method

(Refer Slide Time: 03:09)

Conceptual Models: Watershed Simulation

A watershed model represents hydrologic processes more holistically compared to empirical models, which generally focus on single or multiple processes at a small scale.

The basic form for any watersheds simulation model comes from the popular water-budget equation; so that we will see how these water-budget equation has been done. So, the fundamental concept is that this water-budget equation is calibrated to simulate the runoff from a watershed or the catchment, by knowing the values of the causal variables, and their functional dependence with each other.

(Refer Slide Time: 05:13)

The water budget equation for watershed simulation is

$$R = R_S + G_0 = P - E_{et} - \Delta S$$

- Where R = Total runoff or streamflow
- R_S = Surface runoff
- G_0 = Net groundwater outflow
- P = Precipitation
- E_{et} = Actual evapotranspiration
- ΔS = Change in soil moisture storage

```
(Refer Slide Time: 05:40)
```

Conceptual Models: Watershed Simulation	
• Stanford Watershed Model (SWM) is one of the pioneer of	conceptual models for
watershed simulation developed by Crawford and Linsley in t	the year 1959.
• It has undergone many changes and the modified version , SJ	WM-IV was introduced
in 1966 which was suitable for wide variety of catchment con	ditions.
· Hourly precipitation and daily evapotranspiration, as well as	a
physical description of the catchment, are the major input	ts.
The model divides the soil into three zones with differe	nt 🙈
attributes to mimic evapotranspiration, infiltration, overland	nd 👌
flow, channel flow, interflow, and baseflow phases of the	he 👘
runoff phenomena.	

Stanford Watershed Model (SWM) is one of the pioneer conceptual models for watershed simulation developed by Crawford and Linsley in the year 1959. It has undergone many changes

and the modified version, SWM-IV was introduced in 1966 which was suitable for a wide variety of catchment conditions.

Hourly precipitation and daily evapotranspiration, as well as a physical description of the catchment, are the major inputs. The model divides the soil into three zones with different attributes to mimic evapotranspiration, infiltration, overland flow, channel flow, interflow, and base flow phases of the runoff phenomena.

(Refer Slide Time: 07:39)

Watershed Simulation: Schematic of SWM-IV AET P. PET, T. Radiation Key Storage T = Evapotranspirat T = Temperature T = Temper	tion potranspiration
ET Interception Interception Subroutine Impervious area Surface	Channel inflow Channel inflow
ET Zone storage ET Zone storage Deep ground water storage Upper zone storage Upper zone storage Upper zone storage Storage Deep ground water storage Upper zone storage Stor	Runoff

Watershed Simulation: Schematic of SWM-IV

Fig.1 shows the Schematic diagram of the SWM-IV

On a watershed scale, all the quantities and all the processes are modeled into the three different zones; and the schematic diagram can be shown in fig.1. The causing the input to the system, input to the modeling scheme is the precipitation, then potentially evapotranspiration, then temperature and radiation. And it causes different processes; it influences the snowmelt in influence the interception. So, these all contribute to some extent that goes through the actual evapotranspiration.

So, that is also one side of it, because whatever the input comes in terms of the precipitation; as you see that in this modeling flowchart, goes towards the left-hand side, going via evapotranspiration as a loss to this. And similarly, for the different precipitation that comes to the right-hand side, it comes to different processes again. So from the impervious area, it directly goes to the channel flow.

If it goes through the process of infiltration, some part goes to the groundwater storage, and some part goes to the via interflow and goes to the upper zone. And from the upper zone, it goes to the again back to the overland flow and can join to the channel flow. Some parts can go to the interflow, and again then join the channel flow. Similarly, when it comes to the groundwater storage here, this groundwater storage can go to the deep groundwater storage part; that again comes to the uppers zone depending on the topography at some other region.

And which again joined to the channel flow, mainly through the base flow. And that comes through the ET and it joins to this final output as a runoff. From this deep groundwater storage, some inactive groundwater where it flows and some part from this upper zone, it can go again to this evapotranspiration and join to the actual evapotranspiration.

In fig.1 the schematic diagram considered by this is SWM; but this kind of conceptualization how it flows, how it is losses in the different processes. Depending on that there are different modeling schemes can be developed.

(Refer Slide Time: 10:15)

Soil Conservation Services-Curve Number (SCS-CN) Method

Developed in 1969 by Soil Conservation Services (SCS) of the USA.

Assumptions:

- > Runoff starts after satisfying initial abstraction (I_a) which mainly consists of interception, surface storage, and infiltration.
- > The ratio of actual retention of rainfall to the potential maximum retention (S) is equal to the ratio of direct runoff (V_Q) to precipitation (P) minus initial abstraction.
- > Initial abstraction is some fraction of potential maximum retention.

(Refer Slide Time: 12:25)

Fig.2 shows the SCS relation between precipitation, runoff, and retention

In fig.2, this is a rainfall hydrograph that intensity is shown over time; and this is some part that is the initial abstraction. And this is a V_Q that comes as runoff and this F part is lost during the process. So, it shows SCS the relation between the precipitation runoff and retention

(Refer Slide Time: 12:52)

The basic equation from where this SCS-Curve Number method starts as follows.

From proportionality concept

$$\frac{P-I_a-V_Q}{S} = \frac{V_Q}{P-I_a} \qquad I_a = \lambda S$$

The above equation is rewritten as:

$$V_Q = \frac{(P - \lambda S)^2}{P + (1 - \lambda)S} \quad for P > \lambda S$$
$$= 0 \qquad for P \le \lambda S$$

where

 V_Q = Runoff volume uniformly distributed over the basin

P = Mean precipitation over the basin

S = Potential maximum retention/retention of water by the basin

 I_a = Initial abstraction

 λ = Fraction of *S* considered as initial abstraction

Soil Conservation Services assumes $\lambda = 0.2$

(Refer Slide Time: 15:02)

The parameter S is the retention that depends on various factors. It depends mainly on the three major things; the first one is the soil, the second one is the land use/land cover, and the third one is the antecedent moisture condition (AMC). Now, this S the retention is expressed in terms of some dimensionless number, and that is what is known as the curve number CN.

This CN is a relative measure of the retention, relative measure of the retention by a given soil, land use, and the AMC. So, depending on these three factors, this curve number is decided. So, now the relationship is shown here,

$$S=254\left(\frac{100}{CN}-1\right)$$

Where S is in millimeter that is retention,

The value of CN ranges from 0 to 100. CN equal to 100 represents impervious catchment with S = 0 and as $CN \rightarrow 0$ it represents an infinitely abstracting catchment with $S \rightarrow \infty$.

(Refer Slide Time: 17:14)

Value of CN is determined from a) Soil type b) Antecedent soil moisture c) Land use/cover

a) Soil Classification

Group	Soil Type	Infiltration Characteristics	Runoff Potential
А	Deep sand, Deep loess and Aggregated silt	High infiltration rates even when thoroughly wetted	Low
В	Shallow loess, sandy loam, red loamy soil, red sandy loam and red sandy soil	Moderate infiltration rates when thoroughly wetted	Moderately low
С	Clayey loam, shallow sandy loam, soils usually high in clay, mixed red and black soils	Low infiltration rates when thoroughly wetted	Moderately high
D	Heavy plastic clays, certain saline soils and deep black soils	Very low infiltration rates when thoroughly wetted	High

(Refer Slide Time: 17:46)

b) Antecedent Moisture Condition (AMC)

Refers to the moisture content present in the soil at the beginning of the rainfall-runoff event under consideration. Initial abstraction and infiltration are governed by AMC.

SCS classified AMC into three categor	ies
---------------------------------------	-----

AMC-I	AMC-II	AMC-III
Dry soil but above wilting point. Satisfactory cultivation has taken place.	Average conditions	Sufficient rainfall has occurred during the past 5 days. Saturated soil conditions prevail.

(Refer Slide Time: 18:44)

b) Antecedent Moisture Condition (AMC)

Three concepts are generally used in hydrologic literature to identify the AMC of the soil. These are the antecedent precipitation index (API), antecedent baseflow index (ABFI), and the soil-moisture index (SMI).

SCS uses the antecedent 5-days rainfall as API for AMC.

AMC	Total Rain in F	Previous 5 days
Туре	Dormant Season	Growing Season
Ι	Less than 13 mm	Less than 36 mm
II	13 to 28 mm	36 to 53 mm
III	More than 28 mm	more than 53 mm

(Refer Slide Time: 19:43)

c) Land Use/Co	over				
CN depends t corresponding	pon soil type a to the AMC i.	nd land use/cove e., CN _I , CN _{II} , Cl	er. Divided into N _{III} .	three categories	
SCS provided and soil type.	values of CN _{II}	under AMC-II	condition for di	ferent land use/cov	er
Values of CN	an be conver	rted into <u>CN</u> and	CN _{III} using en	pirical equati	
$CN_I = \frac{1}{2.281}$	0.01281 CN	$\overline{U_{II}} (\overline{CN_{III}}) = \overline{0.4}$	CN_{II} 27 + 0.00573	CNII	-

c) Land Use/Cover

CN depends upon soil type and land use/cover. Divided into three categories corresponding to the AMC i.e., CN_I, CN_{II}, CN_{II}. SCS provided values of CN_{II} under AMC-II conditions for

different land use/cover and soil types. Values of CN_{II} can be converted into CN_{I} and CN_{III} using empirical equations.

$$CN_{I} = \frac{CN_{II}}{2.281 - 0.01281 CN_{II}} CN_{III} = \frac{CN_{II}}{0.427 + 0.00573 CN_{II}}$$

(Refer Slide Time: 20:42)

Use	Treatment or practice	Hydrologic condition	A	в	С	D	
Orahanda	With understory cover		39	53	67	71	
Orchards	Without understory cover		41	55	69	73	A
	Dense		26	40	58	61	1
Forest	Open		28	44	60	64	17
	Scrub	***	33	47	64	67	(in
	Poor		68	79	86	89	
Pasture	Fair	***	49	69	79	84	
	Good		39	61	74	80	
office Water Heater	Jours MIGH 34	Dr. Palib Maine HTT	Thursday				10

Soil Conservation Services-Curve Number (SCS-CN) Method c) Land Use/Cover CN_{II} values for Hydrologic Soil Cover Complexes for AMC-II Conditions Hydrologic Soil Group Land Use ent Hydrole Treatn 88 Wasteland 71 85 ----80 Roads (dirt) 73 83 88 90 Hard surface 77 91 93 86 Water Hydrology: M02L24 Dr. Raiib Maity, IIT KI

c) Land Use/Cover

	Co	ver	Hydr	ologic Soi	l Group (HSG)
Land Use	Treatment or practice	Hydrologic condition	Α	В	С	D
	Straight row		76	86	90	93
	Contourad	Poor	70	79	84	88
	Contoured	Good	65	75	82	86
Cultivated	Contoured &	Poor	66	74	80	82
Cultivated	Terraced	Good	62	71	77	81
	Dundad	Poor	67	75	81	83
	Builded	Good	59	69	76	79
	Paddy		95	95	95	95

$CN_{\mbox{\scriptsize II}}$ values for Hydrologic Soil Cover Complexes for AMC-II Conditions

Lond	Cover		Hyd	rologic	Soil G	roup
Use	Treatment or practice	Hydrologic condition	Α	в	С	D
Orcharda	With understory cover		39	53	67	71
Orchards	Without understory cover		41	55	69	73
	Dense		26	40	58	61
Forest	Open		28	44	60	64
	Scrub		33	47	64	67
	Poor		68	79	86	89
Pasture	Fair		49	69	79	84
	Good		39	61	74	80

	Co	ver	Hy	drologic	Soil Gr	oup
Land Use	Treatment or practice	Hydrologic condition	Α	В	С	D
Wasteland			71	80	85	88
Roads (dirt)			73	83	88	90
Hard surface areas			77	86	91	93

(Refer Slide Time: 22:13)

c) Land Use/Cover					
CN _{II} Va	lues for S	Sugarcane			
Course and treatment		Hydrologic	Soil Group		
Cover and treatment	A	В	С	D	
Limited cover, Straight row	67	78	85	89	-
Partial cover, Straight row	49	69	79	84	1
Complete cover, Straight row	39	61	74	80	1
Limited cover, Contoured	65	75	82	86	1
Partial cover, Contoured	25	59	45	83	1
Complete cover, Contoured	6	35	70	79	

Soil Conservation Services-Cu	urve Number	(SCS-CN)	Method
c) Land Use/Cover			

CINC 87.1	Contraction of the second second	and the second se		Contractor in the second
	Her for S	I DIFFOR	3 n / i r	30/1 600

		Hyd	rologic	Soil G	roup		
	Cover and treatment	A	В	С	D		
Open spaces,	(i) In good condition, grass cover in more than 75% area	39	61	74	80		
lawns, parks etc	(ii) In fair condition, grass cover on 50 to 75% area	49	69	79	84	-	
	Commercial and business areas (85% impervious)	89	92	94	95		
	Industrial Districts (72% impervious)	81	88	91	93		
	Residential, average 65% impervious	77	85	90	92		
	Paved parking lots, paved roads with curbs, roofs, driveways, etc.	98	98	98			
Streets and	Gravel	76	85	89	-		1
rods	Dirt	72	82	87	89		

CNII Values for Sugarcane

Cover and treatment	Hydrologic Soil Group				
	Α	В	С	D	
Limited cover, Straight row	67	78	85	89	
Partial cover, Straight row	49	69	79	84	
Complete cover, Straight row	39	61	74	80	
Limited cover, Contoured	65	75	82	86	
Partial cover, Contoured	25	59	45	83	
Complete cover, Contoured	6	35	70	79	

	Cover and treatment			Hydrologic Soil Group			
Cover and treatment			B	С	D		
Open spaces,	(i) In good condition, grass cover in more than 75% area	39	61	74	80		
lawns, parks etc	(ii) In fair condition, grass cover on 50 to 75% area	49	69	79	84		
	Commercial and business areas (85% impervious)	89	92	94	95		
	Industrial Districts (72% impervious)	81	88	91	93		
	Residential, average 65% impervious	77	85	90	92		
	Paved parking lots, paved roads with curbs, roofs, driveways, etc.	98	98	98	98		
Streets and	Gravel	76	85	89	91		
rods	Dirt	72	82	87	89		

$CN_{\rm II}$ Values for Suburban and Urban Land Uses

(Refer Slide Time: 22:45)

SCS-CN Equation for Indian condition

- Values of λ generally vary in the range of 0.1 to 0.4
- For Indian conditions,
 - > $\lambda = 0.1$ for Black soils under AMC-II and AMC-III.

$$V_Q = rac{(P-0.1S)^2}{P+0.9S}$$
, $P > 0.1S$

> $\lambda = 0.3$ for Black soils under AMC-I and all other soils under AMC-I, AMC-II, and AMC-III.

$$V_Q = rac{(P-0.3S)^2}{P+0.7S}$$
, $P > 0.3S$

(Refer Slide Time: 24:09)

Runoff volume estimation procedure from a catchment

- LULC data is prepared from satellite images.
- Soil type information of the catchment is obtained from soil maps.
- ▶ Rainfall data of stations in and around the catchment is collected and screened.
- > Thiessen polygons are established for each identified rain gauge station.
- > For each Thiessen cell, an appropriate area-weighted CN_{II} value is obtained
- > For each cell, corresponding CN_I and CN_{III} values are calculated.
- Finally, relevant SCS-CN equations are used to obtain the runoff series corresponding to the rainfall series for each cell.

(Refer Slide Time: 25:17)

Advantages:

- The simple conceptual method relies on only one parameter, the curve number CN and is well supported by empirical data.
- Well documented for its inputs (soil, land use/treatment, surface condition, and AMC) and widely accepted in many countries including the USA.

Disadvantages:

- Does not contain any expression for time. Ignores the impact of rainfall intensity and its temporal distribution.
- > Variation of AMC for lower curve numbers and/or rainfall amounts is not clear.

(Refer Slide Time: 26:30)

Example

In a 200 ha watershed, the CN value was estimated as 80 under the AMC-III condition.

- A. Estimate the value of direct runoff volume for the following 4 days of rainfall. The AMC on 20th June 2019 was of category III. Use standard SCS-CN equations.
- B. Estimate the runoff volume if the *CN*_{III} value was 90.

Date	June 20	June 21	June 22	June 23	June 24
Rainfall (mm)	60	30	35	11	12

(Refer Slide Time: 27:15)

Given CN _{III} = 80,	$S = 254 \left(\frac{100}{CN} - 1\right) = 254 \left(\frac{100}{80} - 1\right) = 63.5$ $V_Q = \frac{(P - \lambda S)^2}{P + (1 - \lambda)S}, P > \lambda S$ Standard value o $= \frac{(P - 0.2 \times 63.5)^2}{P + 0.8 \times 63.5}, P > 0.2 \times 63.5$ $= \frac{(P - 12.7)^2}{P + 50.8}, P > 12.7mm$	$\frac{mm}{f\lambda = 0.2}$		
		4	10	F

Solution

Given
$$CN_{III} = 80$$
, $S = 254 \left(\frac{100}{CN} - 1\right) = 254 \left(\frac{100}{80} - 1\right) = 63.5 \text{ mm}$
 $V_Q = \frac{(P - \lambda S)^2}{P + (1 - \lambda)S}$, $P > \lambda S$ Standard value of $\lambda = 0.2$
 $= \frac{(P - 0.2 \times 63.5)^2}{P + 0.8 \times 63.5}$, $P > 0.2 \times 63.5$
 $= \frac{(P - 12.7)^2}{P + 50.8}$, $P > 12.7mm$

From the equation $V_Q = \frac{(P - 12.7)^2}{P + 50.8}$, P > 12.7mm

The runoff is calculated and shown in the table

Date	Rainfall (mm)	Runoff (mm)
June 20	60	20.19
June 21	30	3.7
June 22	35	5.79
June 23	11	0
June 24	12	0
Total	148	29.68

A. The total value of direct runoff = $200 \times 10^4 \times (29.68/1000) = 59360 m^3$

(Refer Slide Time: 28:21)

If
$$CN_{III} = 90$$
, $S = 254\left(\frac{100}{CN} - 1\right) = 254\left(\frac{100}{80} - 1\right) = 28.22 \text{ mm}$
 $V_Q = \frac{(P - 0.2 \times 28.22)^2}{P + 0.8 \times 28.22}$, $P > 0.2 \times 28.22$
 $V_Q = \frac{(P - 5.644)^2}{P + 22.578}$, $P > 5.644mm$

Similarly, calculate the runoff

Date	Rainfall (mm)	Runoff (mm)
June 20	60	35.78
June 21	30	11.28
June 22	35	14.97
June 23	11	0.85
June 24	12	1.17
Total	148	64.05

B. The total value of direct runoff = $200 \times 10^4 \times (64.05/1000) = 128100 \ m^3$

(Refer Slide Time: 29:10)

Other Type of Models

Physically Based Models

- Physical model involves physical laws and equations considering all possible complex mechanisms to simulate the various hydrologic responses within the system.
- It incorporates spatial and temporal variability at very fine scale.
- · However, it requires large number of parameters for calibration.
- Some examples of physical models are MIKE-SHE, Variable Infiltration Capacity (VIC) model, Precipitation Runoff Modeling System (PRMS).

AI/ML Based Models

Surface Water Hydrology: M02L24

 Several artificial intelligence based models namely machine learning, deep learning are being extensively used in the field of rainfall-runoff modelling in order to capture the hidden complex association between the variables in recent years.

Dr. Rajib Maity, IIT Kharagpur

Other Types of Models

Physically Based Models

- The physical model involves physical laws and equations considering all possible complex mechanisms to simulate the various hydrologic responses within the system.
- > It incorporates spatial and temporal variability at a very fine scale.
- ▶ However, it requires a large number of parameters for calibration.
- Some examples of physical models are MIKE-SHE, Variable Infiltration Capacity (VIC) model, Precipitation Runoff Modeling System (PRMS).

AI/ML Based Models

Several artificial intelligence-based models namely machine learning, deep learning are being extensively used in the field of rainfall-runoff modeling in order to capture the hidden complex association between the variables in recent years. (Refer Slide Time: 31:38)

Summary

In summary, we learned the following points from this lecture:

- > Conceptual runoff models are explained in this lecture.
- > The concept of watershed simulation is explained.
- > The basic equation for watershed simulation i.e., water budget equation is presented.
- > The fundamentals of the Stanford Watershed Model are illustrated.
- SCS-CN method and its application for Indian conditions are explained in detail.
- Additionally, some other types of models such as physically-based models and AI/ML models are also discussed briefly.
- In the next lecture flow, characteristic curves and the estimation of storage volume will be discussed