Surface Water Hydrology Professor Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture – 29 Introduction to Unit Hydrographs

In this lecture, we will give the Introduction to Unit Hydrograph.

(Refer Slide Time: 00:36)

So, under this concept covered two things will be considered the first one is an introduction to unit hydrograph and the second one there are some basic assumptions are there on which the unit hydrograph theory is based.

(Refer Slide Time: 00:57)

The outline for this lecture is first some introduction then basic assumptions of the unit hydrograph theory that includes different things specifically for specific things. The first one is the time and space in variability. The second one is the duration of the direct runoff hydrograph the third one is the time invariance and then its linear response. We will learn these background assumptions through some example problems before going to the summary.

(Refer Slide Time: 01:32)

Introduction

A D hour unit hydrograph is a direct runoff hydrograph resulting from one-unit depth generally one centimeter of rainfall excess occurring uniformly over the basin and at a uniform rate for the specified duration of D hours.

In the D-hour unit hydrograph, D can be 2 hours, 3 hours, 4 hours, 8 hours, 12 hours. After separating the base flow whatever is there that we call the DRH. Now, DRH always corresponds to some effective rainfall hydrograph. The DRH is resulting from the one-unit depth of rainfall excess generally consider always as 1 centimeter of rainfall excess that is not the end, two more things after this is occurring uniformly over the basin and at a uniform rate throughout this duration of D hours.

Again, considering the all-other properties of this hydrograph there is a rising limb there is a crest segment there is a falling limb, but the starting and ending at 0 give a completely enclosed area with respect to the time axis which is in the horizontal axis. So, below this curve up to this time axis the direct runoff that comes that is that should be equal to the effective rainfall hydrograph.

So, here another popular interpretation is that the D hour unit hydrograph represents the lump response of the catchment to a unit rainfall excess of D hour duration to produce a DRH.

(Refer Slide Time: 07:11)

It relates only direct runoff to the rainfall excess. Since only 1 cm depth of rainfall excess is considered, the area of the unit hydrograph is equal to a volume given by 1 cm over the catchment.

The rainfall is considered to have a constant average intensity of excess rainfall of 1/D cm/h for the duration of the D-h storm. The spatial distribution of storms is considered to be uniform all over the catchment.

(Refer Slide Time: 08:27)

Basic Assumptions of UH Theory

Time invariability of Rainfall

This assumption states that the effective rainfall or rainfall excess is occurring at a constant intensity $(1/D \ cm/h)$ during the *D*-*h* duration for a *D*-*h* UH.

> The spatial invariability of Rainfall

This assumption states that the effective rainfall or rainfall excess is uniformly distributed over the entire basin.

> The time base of the DRH

This assumption states that the DRH is dependent only on the duration of the effective rainfall and independent of the intensity of effective rainfall.

(Refer Slide Time: 10:06)

Time Invariance

This assumption states that the UH will remain the same irrespective of when the effective rainfall occurs (i.e., any season, month, day, or year) over the basin. Thus, it can be said that direct runoff response to a given effective rainfall in a catchment is time-invariant.

Linear Response

The direct runoff response to the rainfall excess is assumed to be linear. The linear response can be explained as follows:

If an input $x_1(t)$ causes an output $y_1(t)$ and $x_2(t)$ causes an output $y_2(t)$ then, an input $x_1(t) + x_2(t)$ gives an output $y_1(t) + y_2(t)$.

If an input $x_1(t)$ causes an output $y_1(t)$, then $Cx_1(t)$ causes an output $Cy_1(t)$.

(Refer Slide Time: 11:56)

Principle of Proportionality

This assumption states that the ordination of the DRH is proportional to the magnitude of rainfall.

Thus, if rainfall excess in a D-h duration is r times the unit depth, the resulting DRH will have ordinates bearing ratio r to those of the corresponding D-h unit hydrograph. Also, the base of the DRH will be the same as that of the unit hydrograph since the area of DRH will increase by the ratio r.

So, if
$$x_2(t) = r(x_1(t))$$
, then $y_2(t) = r(y_1(t))$

(Refer Slide Time: 13:47)

Example 29.1:

The ordinates of an 8-h Unit Hydrograph (UH) of a catchment are as follows:

Time (h)	0	4	8	12	16	20	24	32	40	48	56	64	72	80	92
UH ordinates (m ³ /s)	0	35	60	95	135	170	195	170	120	70	46	35	26	18	0

Calculate the ordinate of the DRH that will result from an excess rainfall of 2.5 cm in 8 hours.

(Refer Slide Time: 16:18)

Solution	10								
Solution	Time (h)	Ordinates of	Ordinates of 2.5 cm						
The ordinates of DRH are obtained by	• 0 •	0	V2-C 0						
multiplying the ordinate of the 8-h UH	4	35 -	87.5						
by a factor of 2.5 as shown in Table	8 1	60	150						
	12	95	237.5						
was to be a set of the set of the	16	135	337.5						
Following observation can be made	20	170	425						
from the table,	24	195	487.5						
. The intervals of the ordinates of the	32	170	425						
LIH are not related to the duration of	40	120	300						
off are not related to the duration of	48	70	175						
the rainfall excess in anyway and can	56	46	115						
be any convenient value.	64	35	87.5						
	72	26	65						
	· 80	18	45						
	· 92	0	0						

Solution

The ordinates of DRH are obtained by multiplying the ordinate of the 8-h UH by a factor of 2.5 as shown in Table.

Time (b)	Ordinates of	Ordinates of 2.5 cm			
Time (n)	8-h UH (m³/s)	DRH (m ³ /s)			
0	0	0			
4	35	87.5			
8	60	150			
12	95	237.5			
16	135	337.5			
20	170	425			
24	195	487.5			
32	170	425			
40	120	300			
48	70	175			
56	46	115			
64	35	87.5			
72	26	65			
80	18	45			
92	0	0			

Following observation can be made from the table,

The intervals of the ordinates of the UH are not related to the duration of the rainfall excess in any way and can be any convenient value.

(Refer Slide Time: 17:29)

The given 8-h UH and the obtained DRH

Fig.1 shows the UH of example 29.1

Following observations can be made from the drawn graph,

The time base of DRH has not changed. It is the same as that of the given UH.

Ordinates of DRH from 2.5 cm rainfall excess are 2.5 times that for given UH.

(Refer Slide Time: 17:48)

Principle of Superposition

This assumption states that the ordinate of a DRH due to a complex storm, having varying effective rainfall intensities, can be obtained by superimposing the DRH due to each effective rainfall value in succession.

(Refer Slide Time: 20:53)

Example 29.2:

The ordinates of an 8-h unit hydrograph (UH) of a catchment are as follows

Time (h)	0	4	8	12	16	20	24	32	40	48	56	64	72	80	96
UH ordinates (m ³ /s)	0	35	60	95	135	170	195	170	120	70	46	35	26	18	0

Calculate the ordinate of the DRH resulting from an excess rainfall of 5.0 cm and 2.0 cm, each of 8-h duration, occurring successively.

(Refer Slide Time: 21:28)

Solution

It may be noted that 2.0 cm DRH occurs after 5.0 cm DRH.

Therefore, the ordinates of 5.0 cm DRH will be lagged (delayed) by 8-h as shown in the table.

Time (h)	Ordinates of 8-h UH (m³/s)	Ordinates of 5.0 cm DRH (m ³ /s)	Ordinates of 2.0 cm DRH lagged by 8-h (m ³ /s)				
0	0	0	-				
4	35	175	-				
8	60	300	0				
12	95	475	70				
16	135	675	120				
20	170	850	190				
24	195	975	270				
28	183	913	340				
32	170	850	390				
40	120	600	340				
48	70	350	240				
56	46	230	140				
64	35	175	92				
72	26	130	70				
80	18	90	52				
88	6	30	36				
96	0	0	12				
104	-	-	0				

(Refer Slide Time: 22:58)

Solution	Time	Ordinates of 8-h UH	Ordinates of 5.0 cm	Ordinates of 2.0 cm DRH lagged	Resulting ordinates of 7.0 cm -5	0
our using the principle	(n)	(m ³ /s)	DRH (m ³ /s)	by 8-h (m ³ /s)	DRH (m ³ /s)	
ow, using the principle	0	0	0		0	
superposition the	4	35	175		175	
sulting DRH from the	8	60	300	0	300	
vo successive excess	12	95	475	70	545	
infalls are obtained by	16	135	675	120	795	
Iding the ordinates of	20	170	850	190	1040	
ath the DPUs	24	195	975	270	1245	
oui uie DKris,	32	170	850	340	1190	
aintaining the time	40	120	600	390	990	
orrespondence.	48	70	350	340	690	
	56	46	230	240	470	
	64	35	175	140	315	
	72	26	130	92	222	
	80	18	90	70	160	
	92	0	0	52	67	
	100	-		36	- And	
	108			0		

Now, using the principle of superposition the resulting DRH from the two successive excess rainfalls are obtained by adding the ordinates of both the DRHs, maintaining the time correspondence.

-	Ordinates	Ordinates	Ordinates of 2.0	Resulting ordinates
June	of \$-h UH	of 5.0 cm	on DEH lagged	of 7.0 cm
69	(m ³ /s)	DEH (m ³ /s)	by 8-h (m ³ /s)	DRH (m ³ /s)
0	9	Ð	-	9
4	35	175	-	175
8	60	300	0	300
12	95	475	70	545
lé	135	675	120	795
20	170	\$50	190	1040
24	195	975	270	1245
28	103	913	340	1253
32	170	\$50	390	1249
40	120	600	340	940
48	70	350	240	590
56	46	230	I 40	370
64	35	175	92	267
72	26	130	70	200
80	IF	90	52	142
86	- 6	30	36	66
96	9	D	12	12
104	- 9	0	0	Ð

(Refer Slide Time: 23:27)

Fig.2 shows the obtained DRH corresponding to 2.0 cm ER, 5.0 cm ER, and the final composite DRH resulting from the two ERs of example 29.2.

(Refer Slide Time: 23:58)

Summary

In summary, we learned the following points from this lecture:

- A D-h UH is a DRH resulting from 1 unit (generally, 1 cm) of Rainfall Excess (RE) occurring uniformly over the basin and at a uniform rate for the specified D-h duration.
- Basic assumptions of the UH theory are space and time invariability, time-invariance, linear response, and fixed time base of the DRH.
- Using the concept of linear response, two important principles, namely the principle of proportionality and the principle of superposition are explained.
- > In the next lecture, applications of unit hydrographs will be discussed.