Surface Water Hydrology Professor Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture 43 Reservoir Routing: Goodrich Method and Runge-Kutta Method

In this lecture, we are covering two more methods one is the Goodrich method and the other one is the Runge-Kutta method.

(Refer Slide Time: 00:38)

 Goodrich Method Standard Fourth-Order Runge-Kutta Method 	
Standard Fourth-Order Runge-Kutta Method	
Surface Water Hydrology: M02I.43 Dr. Rajib Maity, IIT Kharagpur 2 Outline	
>Introduction to Goodrich Method	
≻Procedure	
≻Solved Example	
Standard Fourth-Order Runge-Kutta Method 😾	
Summary 🖌	

The concept covered that is Goodrich method and the Standard Fourth-Order Runge-Kutta method. Coming to the outline of this lecture, So, first, we will give the introduction to this Goodrich method its procedure and with the help of one solved example, will take up the same example that you have taken in the last class itself to show the to demonstrate the modified

Pul's Method. And then we will discuss this Standard Fourth-Order Runge-Kutta method what is its benefit and what is its difficulties the things will be discussed finally. We will go to the summary.

There are two categories are there one is Reservoir Routing other one is Channel Routing. In this Reservoir Routing, this modified Pul's method was discussed in this last lecture, and we are taking up these two methods in this particular lecture Muskingum method will take in the next lecture.

(Refer Slide Time: 01:49)

Introduction to Goodrich Method

Another popular semi-graphical method of hydrologic reservoir routing is the Goodrich method.

For this method, the continuity equation can be rearranged as,

$$(I_1 + I_2) + \left(\frac{2S_1}{\Delta t} - Q_1\right) = \left(\frac{2S_2}{\Delta t} + Q_2\right)$$

Similar to Modified Pul's method, a suitable Δt time interval should be selected. At the start of flood routing, the initial storage and outflow discharges should be known.

(Refer Slide Time: 03:19)

Goodrich Method: Procedure
1. From the known storage-elevation and discharge-elevation data:
a) a plot between $\left(\frac{2S}{\Delta t} + Q\right)$ and <i>H</i> is prepared.
b) a plot between Q and H is also prepared (on the same plot).
2. The storage, elevation and outflow discharge at the starting of routing are known. Hence, for the first time interval Δt , using the known values of $(l_1 + l_2)$ and $(\frac{2S_1}{\Delta t} - Q_1)$, the value of $(\frac{2S_2}{\Delta t} + Q_2)$ is determined.
Surface Water Hydrology: M02143 Dr. Rajib Maily, IIT Kharagpur 6

Goodrich Method: Procedure

Goodrich Method: Procedure

1. From the known storage-elevation and discharge-elevation data:

a) A plot between
$$\left(\frac{2S}{\Delta t} + Q\right)$$
 and *H* is prepared.

- b) A plot between Q and H is also prepared (on the same plot).
- 2. The storage, elevation, and outflow discharge at the start of routing are known. Hence, for the first-time interval Δt , using the known values of $(I_1 + I_2)$ and $(\frac{2S_1}{\Delta t} Q_1)$, the value of $(\frac{2S_2}{\Delta t} + Q_2)$ is determined.

(Refer Slide Time: 04:28)

Goodrich Method: Procedure
4. From the plot between $\left(\frac{2S}{\Delta t} + Q\right)$ and <i>H</i> (step 1a), the elevation corresponding to $\left(\frac{2S_2}{\Delta t} + Q_2\right)$ for the end of the time step is obtained.
5. The discharge Q_2 corresponding to the elevation obtained in step 4, is obtained from Q vs H graph.
6. For the next time step, $\begin{pmatrix} 2s_{2} \\ \Delta t \end{pmatrix} = \begin{pmatrix} 2s_{2} \\ \Delta t \end{pmatrix} - 2Q_{2}$
7. Step 2 to 6 is repeated for the entire inflow duration to obtain the outflow hydrograph.
Surface Water Ilydrology: M02L43 Dr. Rajib Maity, IIT Kharagpur 7

- 4. From the plot between $\left(\frac{2S}{\Delta t} + Q\right)$ and *H* (step 1a), the elevation corresponding to $\left(\frac{2S_2}{\Delta t} + Q_2\right)$ the end of the time step is obtained.
- 5. The discharge Q_2 corresponding to the elevation obtained in step 4, is obtained from Q vs H graph.
- 6. For the next time step, $\left(\frac{2S_1}{\Delta t} Q_1\right) = \left(\frac{2S_2}{\Delta t} + Q_2\right) 2Q_2$
- 7. Step 2 to 6 is repeated for the entire inflow duration to obtain the outflow hydrograph.

(Refer Slide Time: 05:40)

Example A reservoir has	s the	follo	owing	g elev:	ation	, di	schar	ge an	d sto	rag	ge rela	tions	hips.			
Elevation ((m)			98	98.5	99)	99.5	100	100.	.5 1	100.75	101	101.5	7		
Storage (. (Mm ³)	S)		4	4.12	4.0	3	4.85	5.35	5.9	i	6.02	6.4	6.85	2		
Outflow ((m ³ /s)	<u>Q</u>) \	Ù	0	15	32	2	52	75	105	5	120	135	155			
When the reser	voir	leve	el was	s at 98	8.5 m	, th	e foll	lowin	g floo	od	entere	ed the	reserv	voir.		
Time (h)	0	6	12	18	24	30	36	42	48	54	60	66	2.	_		
Inflow (<i>I</i>) (m ³ /s)	15	25	50	75	68	54	40	32	50	25	18	12	3		-	
Route the flood a) The inflow b) The reserv flood wave	d using and oir e	ng G outf	low l	r ich n hydro vs tir	grapl ne cu	d a h. urve	und p e dur	lot ing tl	ie pa	ssa	age of	f the		1		
Surface Water Hydrology: MO	2L43				Dr.	Rajib	Maity, I	IT Khara	epur	-		8	The	4		10-

Example

A reservoir has the following elevation, discharge, and storage relationships.

Elevation (H) (m)	98	98.5	99	99.5	100	100.5	100.75	101	101.5
Storage (S) (Mm ³)	4	4.12	4.03	4.85	5.35	5.9	6.02	6.4	6.85
Outflow (Q) (m^{3}/s)	0	15	32	52	75	105	120	135	155

When the reservoir level was at 98.5 m, the following flood entered the reservoir.

Time (h)	0	6	12	18	24	30	36	42	48	54	60	66
Inflow (<i>I</i>) (m ³ /s)	15	25	50	75	68	54	40	32	50	25	18	12

Route the flood using the Goodrich method and plot

- a) The inflow and outflow hydrograph.
- b) The reservoir elevation vs time curve during the passage of the flood wave.

(Refer Slide Time: 06:45)

Solution										
First, a time in	terval	4t = 61	nour =	6×60×(50 € 21	600 sec	e. 15 cho	sen.		
The value of	$\frac{2S}{\Delta t} + Q$	s cal	culated	from t	he give	n data a	and the	followi	ing tabl	e is prepared.
<i>H</i> (m)	98	98.5	99	99.5	100	100.5	100.75	101	101.5	7
Q (m3/s)	0	15	32	52	75	105	120	135	155	2
$\frac{2S}{\Delta t} + Q \; (\mathrm{m}^3/\mathrm{s})$	370.37	396.48	44 <mark>8.6</mark> 7	501.07	570.37	651.30	677.41	727.59	789.26	
Then the Q vs	Hand	$\left(\frac{2S}{\Delta t}+\right)$	(Q)vs H	graph	is prep	ared.				
Surface Water Hydrology: M	021.43			Dr. Rajib	Maity, IIT K	haragpur		9	4	3 D

Solution

First, a time interval $\Delta t = 6$ hour $= 6 \times 60 \times 60 = 21600$ sec. is chosen.

The value $\left(\frac{2s}{\Delta t} + Q\right)$ is calculated from the given data and the following table is prepared.

<i>H</i> (m)	98	98.5	99	99.5	100	100.5	100.75	101	101.5
Q (m3/s)	0	15	32	52	75	105	120	135	155
$\frac{2S}{\Delta t} + Q \ (\mathrm{m}^3/\mathrm{s})$	370.37	396.48	448.67	501.07	570.37	651.30	677.41	727.59	789.26

Then the *Q* vs. *H* and $\left(\frac{2s}{\Delta t} + Q\right)$ vs. *H* graph is prepared.

(Refer Slide Time: 07:29)

At the start of routing, elevation H = 98.5 m. Corresponding discharge Q = 15 m³/s (given) From the $\left(\frac{2S}{\Delta t} + Q\right)$ vs. *H* graph

$$\left(\frac{2S}{\Delta t} + Q\right) = 396.48 \text{ m}^3/\text{s}$$

Then, using the following relation

$$\left(\frac{2S}{\Delta t} - Q\right) = \left(\frac{2S}{\Delta t} + Q\right) - 2Q$$

Calculate the value of

 $\left(\frac{2S}{\Delta t} - Q\right)$ at the end of $\Delta t = 6$ h

Figure 1: Goodrich Method of Storage Routing

For the next time step the value of

$$\left(\frac{2S}{\Delta t} - Q\right) = \left(\frac{2S}{\Delta t} + Q\right) - 2Q$$

=396.48-2×15 =366.48 Mm³

Now calculate

$$\left(\frac{2S}{\Delta t} + Q\right)_2 = \left(\frac{2S}{\Delta t} - Q\right) + (I_1 + I_2)$$

=366.48+ (15+25) =406.48 m³/s

From the graphs, the *H* and *Q* values corresponding to $\left(\frac{2S}{\Delta t} + Q\right)$ are obtained, which are 98.60 m and 18.26 m³/s, respectively.

The process is repeated for the entire duration of the inflow hydrograph and the values are prepared in a tabulated form.

(Refer Slide Time: 09:56)

Soluti	on					
Time (h)	I (m ³ /s)	$I_t + I_{t+1}$	$ \begin{pmatrix} \frac{2S}{\Delta t} - Q \\ (\mathbf{m}^{3/s}) \end{pmatrix} $	$ \begin{pmatrix} \frac{2S}{\Delta t} + Q \\ (\mathbf{m}^{3/s}) \end{pmatrix} $	H (m)	Q (m ³ /s)
col 1	col 2	col 3	col 4	col 5	col 6	col 7
0 1	15	m	0	(396.48)	98.50	(15)
6	25	(40)	366.48	406.48	98.60	18.26
12	50	75	369.97	(444.97)	98.96	30.79
18	75	125	383.38	508.38	99.55	54.42
24	68	143	399.53	542.53	99.80	65.76
30	54	122	411.01	533.01	99.73	62.60
36	40	94	407.81	501.81	99.51	52.24
42	32	72	397.32	469.32	99.20	39.88
48	30	62	389.56	451.56	99.03	33.10
54	25	55	385.35	440.35	98.92	29.29
60	18	43	381.77	424.77	98.77	24.21
66	12	30	376.34	406.34	98.59	18.21
Water I	Ivdrology: M0	21.43		Dr. Raiih Mait	v IIT Kharaei	our

Time (h)	<i>I</i> (m ³ /s)	<i>I</i> _t + <i>I</i> _{t+1}	$\frac{\left(\frac{2S}{\Delta t}-Q\right)}{(m^{3}/s)}$	$\frac{\left(\frac{2S}{\Delta t}+Q\right)}{(\mathrm{m}^{3}/\mathrm{s})}$	<i>Н</i> (m)	<i>Q</i> (m ³ /s)
col 1	col 2	col 3	col 4	col 5	col 6	col 7
0	15			396.48	98.50	15
6	25	40	366.48	406.48	98.60	18.26
12	50	75	369.97	444.97	98.96	30.79
18	75	125	383.38	508.38	99.55	54.42
24	68	143	399.53	542.53	99.80	65.76
30	54	122	411.01	533.01	99.73	62.60
36	40	94	407.81	501.81	99.51	52.24
42	32	72	397.32	469.32	99.20	39.88
48	30	62	389.56	451.56	99.03	33.10
54	25	55	385.35	440.35	98.92	29.29
60	18	43	381.77	424.77	98.77	24.21
66	12	30	376.34	406.34	98.59	18.21

(Refer Slide Time: 11:45)

A. Plot of the inflow (col 2) and outflow(col 7) hydrograph against time (col 1)

 B. Plot of reservoir elevation (col 6) against time (col 1) during the passage of flood.

(Refer Slide Time: 12:17)

Standard Fourth-Order Runge-Kutta Method

Pul's method and Goodrich method of level pool routing are essentially semi-graphical methods. An alternative method for level pool routing can be developed by solving the continuity equation using a numerical method such as the Runge-Kutta method. The standard fourth-order Runge-Kutta method is the most accurate one.

It is more complicated than the semi-graphical methods, but it does not require the computation of the special storage-outflow function, and it is more closely related to the hydraulics of flow through the reservoir.

(Refer Slide Time: 13:38)

In this method, the continuity equation is expressed as,

$$\frac{dS}{dt} = I(t) - Q(H)$$

where,

S = Volume of water in storage in the reservoir

I(t) = Inflow into the reservoir as a function of time (t)

Q(H) = Outflow from the reservoir as a function of water surface elevation (*H*).

The change in storage volume, dS, due to a change in elevation, dH, can be expressed as,

$$dS = A(H)dH$$

where A(H) is the water surface area at water surface elevation H.

Combining the relations mentioned in the previous slide, the continuity equation can be rearranged as

$$\frac{dH}{dt} = \frac{I(t) - Q(H)}{A(H)} = F(t, H)$$

(Refer Slide Time: 15:01)

If the routing is conducted from the initial condition, (at $t = t_0$ and $I = I_0$; $Q = Q_0$, $H = H_0$, $S = S_0$) in time steps Δt , the water surface elevation H at $(i + 1)^{th}$ step is given in Runge-Kutta method as,

$$H_{i+1} = H_i + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)\Delta t$$

where,

$$K_{1} = F(t_{i}, H_{i})$$

$$K_{2} = F\left(t_{i} + \frac{\Delta t}{2}, H_{i} + \frac{1}{2}K_{1}\Delta t\right)$$

$$K_{3} = F\left(t_{i} + \frac{\Delta t}{2}, H_{i} + \frac{1}{2}K_{2}\Delta t\right)$$

$$K_{4} = F(t_{i} + \Delta t, H_{i} + K_{3}\Delta t)$$

The suffix *i* denotes the values at the *i*th step, and suffix (i + 1) denotes the values at the (i + 1)th step. At i = 1 the initial conditions are I_0 , Q_0 , S_0 , and H_0

(Refer Slide Time: 17:22)

Surface Water Hydrology: M02L43

Standard Fourth-Order Runge-Kutta Method

- The starting conditions I_0 , Q_0 , S_0 and H_0 prevail at i I. Starting from the known initial conditions and knowing Q vs H and A vs H relationships, a given hydrograph I I(t) is routed by selecting a time step Δt .
- The value of H_i is known at any time $t (t_0 + i\Delta t)$, and the coefficients K_1, K_2, K_3, K_4 are obtained by repeating suitable evaluations of the function F(t, H). Four evaluations of the function F(t, H) are found to be sufficient to determine H_{i+1} .
- Knowing the values of *H* at various time intervals, i.e. H H(t), the other variables Q(H) and S(H) can be calculated to complete the routing operation.

Dr. Rajib Maity, IIT Kharagpi

The starting conditions I_0 , Q_0 , S_0 , and H_0 prevail at i = 1. Starting from the known initial conditions and knowing Q vs. H and A vs. H relationships, a given hydrograph I = I(t) is routed by selecting a time step Δt .

The value of H_i is known at any time $t = (t_0 + i\Delta t)$, and the coefficients K_1 , K_2 , K_3 , K_4 are obtained by repeating suitable evaluations of the function F(t, H). Four evaluations of the function F(t, H) are found to be sufficient to determine H_{i+1} .

Knowing the values of *H* at various time intervals, i.e. H = H(t), the other variables Q(H) and S(H) can be calculated to complete the routing operation.

(Refer Slide Time: 18:24)

Summary
Goodrich method is another semi-graphical method to solve level pool reservoir routing problems (Modifed Pul's method was discussed in the last lecture).
> It is explained with a solved example.
Standard Fourth-Order Runge-Kutta method, which is a numerical method to solve routing problem, is also discussed.
> In the next lecture, hydrological channel routing method will be covered.
Surface Water Hydrology: M021.43 Dr. Rajib Maity, IIT Kharagpur 18

Summary

In summary, we learned the following points from this lecture:

- Goodrich method is another semi-graphical method to solve level pool reservoir routing problems (Modified Pul's method was discussed in the last lecture).
- ➢ It is explained with a solved example.
- Standard Fourth-Order Runge-Kutta method, which is a numerical method to solve routing problems, is also discussed.
- > In the next lecture, the hydrological channel routing method will be covered.