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Confidence Interval and Standard Error in the Frequency Estimates 

 

In this today's lecture, we will cover two important concepts that are called Confidence Interval 

and Standard Error in the Frequent Estimates. 
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In this lecture we will cover two concepts, the first one is confidence interval and the second one 

is the standard error, both are with respect to that estimate that we get from frequency analysis. 
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The outline goes like this. First, we will give some introduction that why this quantification is 

necessary, and then the mathematical formulation for the confidence interval and then a standard 

error will be discussed. And for each of these cases means convince confidence interval and 

standard error, we will take some example problems, and after that, we will summarize what we 

learn. 
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Introduction 

In this week, frequency analysis is explained using various parametric and non-parametric 

methods. A variation in the estimated frequency is noticed even if the same data was used in 

different methods. 

Now, the obvious question comes, which method is giving the best result? Or in other words, 

which method is most ‘reliable’ for the given dataset (𝑋)? 

So, the reliability of the results of frequency analysis depends on how well the assumed 

probabilistic distribution applies to a given set of hydrologic data. We learned about the graphical 

approach, i.e., the use of probability paper for that purpose. However, some more accurate and 

advanced statistical tests named goodness-of-fit tests are available to quantitatively check the fit 

of a distribution, which is beyond the scope of this course. 

However, even after selecting the best-fit distribution, the results (𝑥𝑇) may still remain uncertain 

because of the limited sample size (𝑁). This is just one example of the reason, there is a limited 

sample size and other issues also. For example, even if I say that this data follow a normal 

distribution, then means the question comes how best the fitting is. Is it and perfect normal 

distribution, which is generally not reliable from the data that we are collecting from different field 

data. So, the question remains that even if we do all, we take care of all other things, the results 

that xT should have some uncertainty associated with it.  
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Confidence Interval (CI) of Estimates from Frequency Analysis 

Confidence Interval (CI) of Estimates from Frequency Analysis 

Hence, it is useful to compute a range of 𝑥𝑇, say 𝑥𝑈 and 𝑥𝐿, which is termed as confidence limit 

or confidence interval (CI); 𝑥𝑈 being the upper limit of the CI and 𝑥𝐿 being the lower limit.  

The CI is always associated with a probability measure, known as confidence level (𝛽). 

Corresponding to the confidence level 𝛽, there is a significant level 𝛼, given by- 

𝛼 =
1 − 𝛽

2
 

Thus, for a 95% confidence level (𝛽 = 0.95), the significance level 𝛼 is 2.5%, or 0.025.  
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Confidence Interval (CI) of Estimates from Frequency Analysis 

 So, the confidence interval can be defined as the limits of the estimated value of the variable 

𝑥𝑇 between which the actual value is expected to lie with a certain level of confidence 𝛽. 

 For estimating the event magnitude (𝑥𝑇) for return period 𝑇, the upper limit 𝑥𝑈 and lower 

limit 𝑥𝐿 may be specified by adjustment of the general equation of frequency analysis: 

𝑥𝑈 = �̅� + 𝐾𝑇,𝛼
𝑈 𝑆 



𝑥𝐿 = �̅� + 𝐾𝑇,𝛼
𝐿 𝑆 

where 𝐾𝑇,𝛼
𝑈  and 𝐾𝑇,𝛼

𝐿  are the upper and lower confidence limit of frequency factors. 
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𝐾𝑇,𝛼
𝑈  and 𝐾𝑇,𝛼

𝐿  can be determined for normally distributed data using the non-central t distribution. 

The same factors are also used for the Pearson Type III distribution. Approximate values for these 

factors are given by: 

                                    𝐾𝑇,𝛼
𝑈 =

𝐾𝑇+√𝐾𝑇
2−𝑎𝑏

𝑎
         and        𝐾𝑇,𝛼

𝐿 =
𝐾𝑇−√𝐾𝑇

2−𝑎𝑏

𝑎
 

Where,  

𝑎 = 1 −
𝑍𝛼
2

2(𝑁−1)
 and 𝑏 = 𝐾𝑇

2 −
𝑍𝛼
2

𝑁
 

𝑍
𝛼

: Standard normal variate with exceedance probability 𝛼, and 

N: Sample size 
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Example 53.1 

Assuming the annual maximum discharge data used in Example 49.1 (table reproduced below) to 

follow Log-Pearson type III distribution, determine the 95% and 99% confidence interval for a 

100-year maximum annual flood.  
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Solution 

As the given flood data series (𝑋) follows the log-Pearson type III distribution, firstly convert the 

𝑋 values into a series of 𝑌 values where 𝑦 =  𝑙𝑜𝑔10(𝑥). Now, three parameters are calculated for 

this 𝑌 series and obtained as the mean (𝑦 ̅) = 3.427, std. deviation (𝑆𝑦) = 0.208, and coefficient of 

Skewness (𝐶𝑆) = 0.021 

Now, following the same procedure as in example 51.3, here for a 100-year flood, from the 

standard table for log-Pearson type-III distribution, we get,  

                𝐾100 = 2.326,   for 𝐶𝑆 = 0          and       𝐾100 = 2.4,   for 𝐶𝑆 = 0.1 

So, for 𝐶𝑆 =  0.021, by linear interpolation, 

  𝐾100 = 2.326 +
2.4−2.326

0.1−0.0
× (0.021 − 0) = 2.341 
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Now, for 95% CI,    𝛽=0.95,    and 𝛼=0.025,    and hence, 𝑍
𝛼

=1.96 (from Standard Normal table) 

So, 

𝑎 = 1 −
𝑍𝛼
2

2(𝑁−1)
= 1 −

1.962

2(40−1)
= 0.951               𝑏 = 𝐾𝑇

2 −
𝑍𝛼
2

𝑁
= 2.3412 −

1.962

40
= 5.384 

𝐾𝑇,𝛼
𝑈 =

𝐾𝑇 + √𝐾𝑇
2 − 𝑎𝑏

𝑎
=
2.341 + √2.3412 − 0.951 × 5.384

0.951
= 3.0926 



𝐾𝑇,𝛼
𝐿 =

𝐾𝑇 − √𝐾𝑇
2 − 𝑎𝑏

𝑎
=
2.341 − √2.3412 − 0.951 × 5.384

0.951
= 1.8306 

So, the 95% Confidence limits are: 

𝑦𝑈 = �̅� + 𝐾𝑇,𝛼
𝑈 𝑆𝑦 = 3.427 + (3.0926 × 0.208) = 4.0702 

log(𝑥𝑈) = 𝑦𝑈    so, 𝑥𝑈 = 10𝑦𝑈 = 104.0702 = 𝟏𝟏𝟕𝟓𝟒. 𝟑𝟗 𝒄𝒖𝒎𝒆𝒄  

𝑦𝐿 = �̅� + 𝐾𝑇,𝛼
𝐿 𝑆𝑦 = 3.427 + (1.8306 × 0.208) = 3.8077 

log(𝑥𝐿) = 𝑦𝐿    so, 𝑥𝐿 = 10𝑦𝐿 = 103.8077 = 𝟔𝟒𝟐𝟐. 𝟒𝟒 𝒄𝒖𝒎𝒆𝒄  

So, the 95% Confidence Interval (CI) for a 100-year flood at that river gauging station is obtained 

as 6422    to   11754 cumec.  

To note, in example 51.3 (Lecture#51), the 100-year flood was obtained as 8143 cumec, which 

lies within this CI. 

Following a similar procedure, the 99% CI for a 100-year flood is estimated as 6032    to   13736 

cumec.   

It may also be noted that the width of the confidence interval around the estimated flood magnitude 

reduces as the sample size increases. 
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Standard Error of Estimates from Frequency Analysis 

The standard error of estimate (𝑆𝑒) is a measure of the standard deviation of the extreme magnitude 

computed from the sample (specific to some return period) with respect to the true event 

magnitude.  

Formulae for the standard error of estimate using the normal and Extreme Value Type-I 

distributions are as follows: 

Normal Distribution 

𝑆𝑒 = (
2 + 𝑍𝛼

2

𝑁
)

1/2

𝑆 

 

Extreme Value Type-I Distribution 

𝑆𝑒 = [
1

𝑁
(1 + 1.3𝐾𝑇 + 1.1𝐾𝑇

2
)]
1/2

𝑆 
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Standard errors may be used to construct confidence intervals for some particular return period, in 

a similar manner that was illustrated in Example 53.1, except that in this case the confidence limits 

at significance level 𝛼 are defined as:  



𝑥𝑈 = 𝑥𝑇
̅̅̅̅ + 𝑍𝛼𝑆𝑒 

𝑥𝐿 = 𝑥𝑇
̅̅̅̅ − 𝑍𝛼𝑆𝑒 

where 𝑍𝛼 is the standard normal variate with exceedance probability 𝛼.  
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Example 53.2 

Assuming the annual maximum discharge data used in Example 49.1 (also in 53.1) to follow 

Extreme Value Type-I distribution, determine the 95% and 99% confidence interval for a 100-year 

maximum annual flood.  

Solution:  Using the Extreme Value Type-I distribution, the 100-year maximum annual flood was 

already calculated in Example 52.2 and obtained as 𝑥100 = 8166 cumec. 

Further, the mean flood magnitude (𝑥 ̅) was 2985.80 cumec and the standard deviation (S) was 

1457.54 cumec. Also for sample size N = 40, reduced mean (𝑦𝑁̅̅̅̅ ) = 0.5436 and reduced standard 

deviation (𝑆N) =1.1413 (from standard tables in Lecture#52) 

Now, for a 100-year flood, T = 100; the reduced variate will be  𝑦100 = −ln [ln
100

100−1
] = 4.6 

So, the frequency factor, 𝐾100 =
 𝑦100−𝑦𝑁̅̅ ̅̅

𝑆𝑁
=

 4.6−0.5436

1.1413
= 3.5542 
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Now, the standard error is calculated as 

                            𝑆𝑒 = [
1

𝑁
(1 + 1.3𝐾𝑇 + 1.1𝐾𝑇

2
)]
1/2

𝑆 

                                  = [
1

40
(1 + 1.3 × 3.5542 + 1.1 × 3.5542

2
)]
1/2

× 1457.54 = 1018.1 

Now, for 95% CI, 𝛽 = 0.95, and 𝛼 = 0.025, and hence, 𝑍𝛼 = 1.96 (from Standard Normal table) 

𝑥𝑈 = 𝑥𝑇
̅̅̅̅ + 𝑍𝛼𝑆𝑒 = 8166 + (1.96 × 1018.1) = 𝟏𝟎𝟏𝟔𝟏. 𝟒𝟖 𝒄𝒖𝒎𝒆𝒄 

 𝑥𝐿 = 𝑥𝑇
̅̅̅̅ − 𝑍𝛼𝑆𝑒 = 8166 − (1.96 × 1018.1) = 𝟔𝟏𝟕𝟎. 𝟓𝟐 𝒄𝒖𝒎𝒆𝒄 
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Solution 

So, finally, the 95% CI for a 100-year flood at that river gauging station is obtained as 6171 to 

10161 cumec.  

Following a similar procedure, the 99% CI for a 100-year flood is estimated as 5544 to 10788 

cumec. 

Now, considering other return periods, we can develop the 95% (red) and 99% (green) confidence 

band for the annual maximum flood magnitudes corresponding to different return periods.   



 

Figure 1 shows the CI for a different return period for example 53.1 
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Summary 

In summary, we learned the following points from this lecture: 

 In this lecture, we learned about possible causes of uncertainty in the estimates obtained 

from the frequency analysis. These include proper selection of the probability distribution, 

limited sample size, etc.  

 To quantify this, a range of the estimated value is computed with respect to some 

predefined significance level. This range is known as a confidence interval.  



 Next, we learned how to develop such confidence intervals with an illustrative example. 

 Finally, the concept of the standard error is discussed and the procedure to estimate the 

confidence interval from standard error is also discussed along with an example.  

 In the next lecture, various data-related issues behind the frequency analysis will be 

discussed. 

 


